
 

Commentary by me on Following Paper Brian Scannell 30/9/01 
 

i) There could be a problem with this in the fact that in Section 10 for rational values 
of  as a summation of θθ nn sincos + θncos , it is wrong to say that if each individual 
term of the expansion reproduced below 
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is irrational then the summation is irrational. Since summation of irrational numbers is 
not closed i.e.   and ,   where χβαχβα ≠+ are all irrational i.e. (2+ 2 ) +(3- 2 )=5 
which isn't irrational.  
Refutation: while this is in general true for composite irrational numbers a+b where 
at least one of a or b are irrational this is not true for single irrational numbers I  
(excepting I +-I=0 if 0 is irrational.) 
As is the case here (?) 
ii) Thing to prove; 

nnn zyx =+ , if x,y,z integer, for n>2 then is irrational. 
For n=2 

nnnzR /1)sin/(cos)( θθθ +=
)(θR can = z an integer and then x,y, )(θR (=z) is a Pythagorean Triple. For 

n>2, since )(θR is irrational, if there is an integer solution to  then z= 
integer and therefore is irrational but  is rational i.e. 

is rational . If is rational then z must be 
irrational and therefore there is no integer solution to . 

nnn zyx =+
nnn /1)sin(cos θθ + 2)(θR

nnn /2)sin(cos θθ + nnn /1)sin(cos θθ +
nnn zyx =+
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iii) Whilst it can be proved that for all theta (except 60 deg) rational then cos theta is 
irrational.  Is the reverse true. for all theta irrational is cos theta rational (except 60 
degrees). Even if it is true it may not be an entire set. Can cos theta rational yield  
theta that is irrational as well as rational? 



 

Discussion on Fermat’s Last Theorem using Mathematics Contemporary to 
Fermat 

 
by 

Brian Scannell 
 
17/6/01 
 
The following discussion is for rational theta only. 
Cosines and sines of irrational theta are rational, in particular, for Pythagorean triples 
the sine and cosine of irrational theta are both rational. For other irrational theta the 
sine is rational but the cosine is irrational or vice versa.   
 
Introduction 
 
Fermat’s Last Theorem (FLT) states that there are no positive integers x,y,z and n for 
n>2 such that, 
 

nnn zyx =+ .     (1) 
 
In 1994 Professor Wiles solved Fermat’s Last Theorem but added: 
 

“Fermat couldn’t possibly have had this proof. It’s a 20th-
century proof. There’s no way this could have been done 
before the 20th-century.” (see Ref.1 ) 

 
Fermat formulated his theorem between 1630 to 1654 (maybe 1637) in annotating 
his copy of Bachet’s translation of Diophantus’ Arithmetica with (translated into 
English and using modern terminology), 
 

There are no positive integers such that , for 
n>2. I’ve found a remarkable proof of this fact, but there is 
not enough space in the margin to write it. 

nnn zyx =+

 
His proof has never been found. But if he had solved it he would have only be able to 
use the mathematics available at the time. Trigonometric functions were available at 
this time (see Appendix 1).  
 
The following discussion uses trigonometric functions. For ease of visualisation it also 
uses graphical outputs. 
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If Fermat could prove the irrationality of the trigonometric expressions given in Note 5 
he could have been able to prove his last theorem. Without the graphs the summary 
proof presented here wouldn’t be much bigger than Bachet’s margin (maybe!).   



 

 
Summary Proof. 
 
1) Note 1 depicts graphically the form of  for . I have 
called these the Fermat Charts. 

nnn zyx =+ 0 and , >zyx

 
2) A plan view of the Fermat Charts show the integer contours of z for a given n for 
the solution of . I have called these Fermat Contour Plots and are 
shown in Note 2. 

nnn zyx =+

 
3) Note 3 constructs a line on the Fermat Contour Plots that starts from the origin and 
ends on a integer z contour line. I have called this a Fermat Vector )(θR and defined 
over the range °<<° 900 θ .   
 
4) The crux of this whole proof is the step given in Note 4. 
From observations on the Fermat Vector, algebraic manipulation shows )(θR  is 
given by 

 
Plots show that for 2>n )(θR is maximum for °= 45θ and is symmetric about that 
angle. 
 
For n=2 )(θR is constant. 
 

The normalised Fermat Vector given by )(ˆ θR
z

R )(θ
  

 
For there to be a solution to Fermat’s equation (1) as shown in the Fermat Contour 
Plots, the vector )(θR  must finish on a integer contour and have components x and 
y which are also integer. 
 
Note 4 shows this leads to the re-statement that if FLT is true then,  

and 

where, according to the Fermat Contour Plots,  θ  is defined over the range 
°<<° 900 θ . 

 
5) Note 5 discusses the rational roots of polynomial equations and shows that a 
number of the form n a , where a and n are positive integers, is either irrational or 
integer; in the latter case is the nth power of an integer. a
 
6) But by looking at the Fermat Vector in the Fermat Plot, 
 

222 )(θRyx =+ . 
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nnnzR /1)sin/(cos)( θθθ +=

2nfor  rational is )sin(cos /2 =+ nnn θθ

2nfor  irrational is )sin(cos /2 >+ nnn θθ



 

Since x and y are integers  is an integer and therefore from Note 5 2)(θR )(θR is 
irrational unless )(θR is an integer, and in this case is x,y, )(θR  is a Pythagorean 
Triple (PT) and  nnnzR /1)sin/(cos)( θθθ += .2=∴= nz  Therefore for n>2 if there 
is an integer solution to ,nnn zyx =+ )( θR has to be irrational and  has to be 
an integer. 

2)(θR

 
Additionally since )(/)sin( θθ Ry=  and )(/)cos( θθ Rx= for there to be an 
integer solution to , nnn zyx =+ )sin(θ  and )cos(θ must be irrational since )(θR is 
irrational. 
  
Note 6 discusses trigonometric numbers and shows that for rational θ , 

θθ sin  and cos are irrational apart from the values 0, ±0.5 and ±1 i.e. over the range 
°<<° 900 θ  θcos is only rational for °= 60θ  and θsin  is only rational for °= 30θ . 

 
Therefore for there to be an integer solution to , nnn zyx =+ θ  must be rational in 
order to make )(θR irrational (apart from °= 60θ  for θcos and °= 30θ for θsin .)  
 
Statement 1 
Since  and  for there to 
be an positive integer solution to  for n>2,  has to be 
irrational and  has to be rational. 

nnnzR /1)sin/(cos)( θθθ += nnnzR /222 )sin/(cos)( θθθ +=
nnn zyx =+ nnn /1)sin(cos θθ +

nnn /2)sin(cos θθ +
 
 
 (Rational θ ?) 
 
 
Notes 7 to 10 described in steps 7 to 10 below show that for all rational θ , 

is indeed irrational but  is also irrational.  nnn /1)sin(cos θθ + nnn /2)sin(cos θθ +
This is contrary to Statement 1 and therefore there are no positive integer solution to 

 for n>2.  nnn zyx =+
 
The steps needed to show and are irrational 
for rational 

nnn /1)sin(cos θθ + nnn /2)sin(cos θθ +
θ  are given below in 7 to 10. 

 
7)The first step is to find the rational values of .  This is achieved in 
Notes 7 to 10.  

θθ nn sincos +

The steps are to expand  in terms of θncos θn as in Note 7 and  in terms of θnsin
θn as in Note 8.  

Note 9 then gives the combined expansion of  in terms of θθ nn sincos + θn .  
 
Note 10 finds that for rational theta the only rational values of  over the 
angular range 

θθ nn sincos +
°<< 900 θ occur for n even and 

°°°°°°°= 75 and 5.67,60,45,30,5.22,15θ .  
 
8) Note 11 finds the following rational values of , 2)sin(cos θθ nn +
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for n even, theta rational, 



 

2)sin(cos θθ nn +  is rational for °= 75 and 5.67,60,45,30,5.22,15θ , 
for n odd, 

2)sin(cos θθ nn +  is rational for °= 75 and 45,15θ . 
For all other θ ,  is irrational over the angular range 2)sin(cos θθ nn + °<<° 900 θ . 
 
9) Note 12 shows that if α  is irrational then  is irrational.   n/1α
Letting α =  for all rational2)sin(cos θθ nn + θ  and n except those in 7) above, this 
shows is irrational. nnn /2)sin(cos θθ +
 
10) The irrationality of  for the few  remaining rational nnn /2)sin(cos θθ + θ  given in 
7) is shown on a case by case basis in Note 13. 
 
11) As a summary has been shown to be irrational for rational nnn /2)sin(cos θθ + θ  
and n>2.   
 
This is the same as saying there are no integer x,y,z for integer n>2 for which 
 
 . nnn zyx =+
 
Also  is rational for n=2 from the identity  
therefore there are solutions for integer x,y,z of 

nnn /2)sin(cos θθ + 1sincos 22 =+ θθ

 
  for n=2 nnn zyx =+
 
i.e.  

222 zyx =+  has integer solutions. 
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For rational theta, showing the irrationality of for n>2 thus shows 
Fermat’s Last Theorem is true for rational theta. 

nnn /2)sin(cos θθ +



 

Note 1 
 
Plots of i.e. z=f(x,y)=  for positive real z (called Fermat 
Charts) are shown here for 

nnn zyx =+ nnn yx /1)( +
10,0 ≤≤ yx  and n=2,3 and 6. 

For ease of visualisation, contours are shown for integer values of z 
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Note 2 
Plan views of the Fermat Charts (called Fermat Contour Plots) are shown here for the 
above three cases. Again integer contours of z are shown.  
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Fermat Contour Plot for n=6 



 

Note 3 
Construct a radius on the Fermat Contour Plot. The radius is drawn from the origin 
and ends on a contour line. This is called the Fermat Vector, R(θ). 
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Note 4 
Form of R(θ). 
 

 
In order that x or y not be zero, θ  is defined over the range, 
 

.900 <<θ  
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1.4222
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4.1 Values of R(θ) are shown for z=2,5 and 10 for n=2,3,and 6. 
 
 
 
 
 
 
 
 
 
       
       

Values of Radius R for z=2 and various n

1.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: 
4.1.1 R(θ) = constant = z for n=2. 
this is shown by putting n=2 into equation 4.4 
 

4.1.2 The maximum value of R(θ)  occurs for θ = 45 degrees and R(θ)  is symmetric 
about that angle. 
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Values of Radius R for z=5 and for various n
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4.2  R(θ) can be normalised to give a curve independent of z  
From eqn. 4.4. 

Where zR /)(θ is the normalized Fermat Vector  which has a value ranging from 
1 to 1.42 for all n and 

)(ˆ θR
θ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comment 

(i) As , ∞⇒n 2max  )(R ⇒
∧

θ , as shown below. 
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4.3 Observation.  For there to be a solution to Fermat’s equation (1) as shown in the 
Fermat Contour Plots, the Fermat Vector R(θ) must finish on a integer contour and be 
coincident with an intersection of integer grid points i.e. have components x and y 
which are also integer.  
 
For this to be the case, combining equations 4.1 and 4.4 give, 
 

 
Suppose Fermat’s Theorem of eqn (1) is false i.e. there are integer solutions x,y,z for 
integer n>2.  Therefore since x and y are integers then, 
 

22 y and x are integers. 
 
Therefore,  
 

22 yx + is an integer, call it A. 
 
Therefore R(θ)2 is also the integer A. 
 
Therefore  
 

 
Since z is an integer, z2 is also an integer, call it B. 
 
Therefore, 

number. rational a is )sin/(cos1)(/ /22 nnnRBA θθθ +==
∧

 
 
i.e. the normalized Fermat Vector squared is rational. 
 
Therefore, 

 )sin(cos/ /2 nnnAB θθ += is also rational and is equal to,  the reciprocal 
squared normalized Fermat Vector. 

2)(/1 θ
∧

R

 
4.4 Re-statement of Fermat’s Last Theorem. 
 
If FLT is false, then there are positive integers x,y,z  and n>2 such that  
 

nnn zyx =+ . 
 
which is equivalent to the statement, 
 

 )sin(cos /2 nnn θθ + is a rational number. 
 
 
In other words FLT is true if  
 

nnn /2)sin(cos θθ +  is a rational number for n=2, 
and 
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.......4.6.................... )sin/(cos)R( /22222 nnnzyx θθθ +==+

A.integer   thealso is )sin/(cos /22 nnnz θθ +



 

nnn /2)sin(cos θθ +  is irrational for n>2, where, as shown by the Fermat Contour 
Plots,  °<<° 900 θ . 
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Note 5 Rational Roots of Polynomial Equations 
 
The following is taken from I.Niven Ref. 3. 
 
Theorem 5.1 
Let u, v, w  be integers such that u is a divisor of vw, and u and v have no prime 
factors in common. Then u is a divisor of w. More generally, if u is a divisor of vnw, 
where n is any positive integer and u and v have no prime factors in common, then u 
is a divisor of w. 
 
Example 
u = 4, v = 5, v3w = 500.  
4 and 5 have no prime factors in common and 4 divides 500.  Also 4 divides 500/53 = 
4. 
 
Proof 
 
The main ingredient is the Fundamental Theorem of Arithmetic (see for example, Ref. 
3 for a proof of this) which assures us that there is only one way to factor u, v, w into 
prime factors.  
 
Theorem 5.2  
Consider any polynomial equation with integer coefficients, 
 

0... 01
2

2
2

2
1

1 =++++++ −
−

−
− cxcxcxcxcxc n

n
n

n
n

n …………………5.1 
 
If this equation has a rational root a/b, where a/b is presumed to be in its lowest 
terms, then a is a divisor of  and b is a divisor of . 0c nc
 
Proof 
Substitute a/b in eqn 5.1 then multiply by   nb
 

0... 0
1

1
22

2
22

2
1

1 =++++++ −−−
−

−
−

nnnn
n

n
n

n
n bcabcbacbacbacac ……..5.2 

 
Which can be written as 
 

)...( 1
0

2
1

32
2

2
2

1
1

−−−−
−

−
− −−−−−−= nnnn

n
n

n
n

n bcabcbacbacacbac  
 
This shows b  is a divisor of and by applying Theorem 5.1 with u, v, w replaced 
by b, a, and cn, we conclude that b is a divisor of cn. 

n
nac

 
Eqn 5.2 can be written as, 
 

)...( 1
1

2
2

2
1

1
0

−−−
−

− −−−−−= nnn
n

n
n

n bcabcbacacabc  
 
This shows a is a divisor of  and by applying Theorem 5.1 with u, v, and w 
replaced by a, b, and co, we conclude a is a divisor of c0. 

nbc0
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Corollary 1 
 
Consider an equation of the form, 
 

0... 01
2

2
2

2
1

1 =++++++ −
−

−
− cxcxcxcxcx n

n
n

n
n ……..5.3 

 
with integer coefficients. If such an equation has a rational root, it is an integer, and 
this integer root is a divisor of c0. 
 
Proof 
 
Consider any rational root a/b with b a positive integer. According to Theorem 5.1 b 
must be a divisor of cn; that is b is a divisor of 1; that is b =1. Consequently any 
rational root is of the form a/1, so it is an integer a. Also by Theorem 5.1 a is a divisor 
of c0. 
 
 
Corollary 2 
 
A number of the form n a , where a and n are positive integers, is either irrational or 
integer; in the latter case a is the nth power of an integer. 
 
Proof 
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This follows from Corollary 1 because n a  is a root of , which is an 
equation of the form 5.3, and if this equation has a rational root it must be an integer. 

Furthermore , if 

0=− ax n

n a  is an integer, say k, then .k since , n n kka n ==



 

Note 6 
Trigonometric Numbers 
This proof is adapted from I. Niven Ref 3 
Theorem 6.1 
Let θ = 180k°  be an angle whose measurement in degrees is a rational number, that 
is, k is rational. Then cos θ and sin θ are irrational apart from the values 0, ±0.5 and  
±1. 
 
In order to prove this we need to use the trigonometric expansions of functions of 
multiple angles in a series of descending powers. This is given in eqn 6.8 below. 
 
From the trigonometric identity, 
 

6.1..........                                        )(sin)(cos2cos
get we

   ,
sinsincoscos)cos(

22 θθθ

θθ

−=

==
−=+

BAputting
BABABA

 

 
using, 
 

.......6.2                                                  )(sin)cos(1
becomes,  this  ,putting

sinsincoscos)cos(

22 θθ

θθ

+=

==
+=−

BA
BABABA

 

 
substituting for  from eqn 6.2 into eqn 6.1 gives, 2)(sinθ
 

1)(cos22cos 2 −= θθ  
 
Multiplying by 2 gives, 
 

2)cos2(2cos2 2 −= θθ                                    ….6.3 
 
 
We can continue by putting 
 

6.4 ................                       sin2sincos2cos3cos
giving

sinsincoscos)cos(
in   ,2

θθθθθ

θθ

−=

−=+
==

BABABA
BA

 

 
and 
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6.5 ................                       sin2sincos2coscos
giving

sinsincoscos)cos(
in    ,2

θθθθθ

θθ

+=

+=−
==

BABABA
BA

 

 
Adding eqn 6.4 to 6.5 gives 
 

θθθθ cos2cos2cos3cos =+  
 
Substituting for θ2cos2 from eqn 6.3 
 

θθθθ cos3cos)cos2(3cos 2 −=  
 
Multiplying by 2 gives 
 

)cos2(3)cos2(3cos2 3 θθθ −=  
 
 
A recursive formula for this is 
 

θθθθ )1cos(2)cos2)(cos2()1cos(2 −−=+ nnn  
 
The expansions continue, 
 

)cos2(9)cos2(30)cos2(27)cos2(9)cos2(9cos2
2)cos2(16)cos2(20)cos2(8)cos2(8cos2

)cos2(7)cos2(14)cos2(7)cos2(7cos2
2)cos2(9)cos2(6)cos2(6cos2

)cos2(5)cos2(5)cos2(5cos2
2)cos2(4)cos2(4cos2

3579

2468

357
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35

24

θθθθθθ

θθθθθ

θθθθθ

θθθθ

θθθθ

θθθ

+−+−=

+−+−=

−+−=

−+−=

+−=

+−=

 

 
 
Ref 3 gives the general trigonometric expansion 
 

integer. ven for        cos2
!

)12)...(1((-1)

is  termgeneral  thewhere

6.6..............cos2
!2

)3(cos2
!1

cos2cos

212r

45231

+
+−−−

−
−

+−=

−−−

−−−−−

θ

θθθθ

rnrn

nnnnnn

r
rnrnn

nnnn

  

 
Multiplying eqn. 6.6 by 2 we get, 
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.      ) cos2(
!

)12)...(1((-1)

is  termgeneral  thewhere

7.6..............)cos2(
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)3()cos2(
!1

)cos2()cos2(

2r-nr

42

θ

θθθθ

r
rnrnn

nnnn nnn
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for example, the coefficient of  for n=6 is, 0)cos2( θ
 

2
!3

1.2.6.)1(

is,  )6cos2( oft coefficienlast  
116612

21361
above, 6.1eqn  of  termgeneral in the 

02for  3

3 −=−

∴
=+−=+−

=−−=−−
∴

=−=

θ
rn

rn

rnr

 

 

 
More generally this can be written 
       

       
Substitute 180k° for θ  in θncos2  

rational.k  andinteger n sinceinteger  where
2180cos2180cos2cos2

==
±===∴

m
mnknθ

 

 
This an equation of the form of eqn 5.3 where 180cos2 kx =  is a root of this equation 
and Corollary 1 says that if is rational then it is an integer. 180cos2 k
 

...3,2,1,0180cos2 ±±±=∴ k  
 
But the maximum value that can be is 180cos2 k 2± for ....2,1,0=k  

2or  1,0180cos2 ±±=∴ k  
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integers. are    tscoefficien  thewhere
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8.6..............)cos2()cos2()cos2()cos2(
2

2

4
4

2
2

k

rn
rn

n
n

n
n

n

c
c

ccn
−

−

−
−

−
−

+

+++=

θ

θθθθ

  odd. nfor  zero are ...,,      
evennfor  zero are ...,, and

 integers are    tscoefficien  thewhere
c)(2cos)cos2(...                                      

9.6..............)cos2()cos2()cos2()cos2(

420

531

01
2

2

2
2

1
1

=
=

+++

+++= −
−

−
−

ccc
ccc

c
cc

ccn

k

n
n

n
n

n

θθ

θθθθ

  integers are    tscoefficien  thewhere
02c(2cosk180))180cos2(...                                      

)180cos2()180cos2()180cos2(

01
2

2

2
2

1
1

k

n
n

n
n

n

c
ckc

kckck

=±+++

+++∴ −
−

−
−



 

=⇒ 180cosk 0, ±0.5 or ±1 
 
Since rational. is j  where)180cos()180)2/1cos(()18090cos(180sin jkkk =−=−=  
It follows has the same rational values as and Theorem 6.1 is 
proved.  

)180sin(k )180cos(k

 
Therefore for rational θ , θθ sin  and cos are irrational apart from the values 0, ±0.5 
and ±1. 
 
Table 6.1 Rational Values of θcos  

θcos  examples θ  general θ  
0 90,270,450,630,810 180k+90°  k=0,1,2,3… 

+0.5 60,300,420,660,780 360k±60°  k=0,1,2,3… 
-0.5 120,240,480,600,840 180k±60°  k=1,3,5,7… 
+1 0,360,720,1080,1440 360k°        k=0,1,2,3… 
-1 180,540,900,1260,1620 180k°        k=1,3,5,7… 

 
 
Table 6.2 Rational Values of θsin  

θsin  examples θ  general θ  
0 0,180,360,540,720 180k°                 k=0,1,2,3… 

+0.5 30,150,390,510,750 360k+(90±60)°  k=0,1,2,3… 
-0.5 210,330,570,690,930 180k+(90±60)°  k=1,3,5,7… 
+1 90,450,810,1170,1530 360k+90°           k=0,1,2,3… 
-1 270,630,990,1350,1710 360k+270°         k=0,1,2,3… 
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Note 7 
Powers of θcos in terms of multiple angles  
 
7.1  for n even. θncos
 

12coscos2
2

2 +=

=

θθ

n
 

 

32cos44coscos2
4

43 ++=

=

θθθ

n
 

 

102cos154cos66coscos2
6

65 +++=

=

θθθθ

n
 

 

352cos564cos286cos88coscos2
8

87 ++++=

=

θθθθθ

n
 

 

1262cos2104cos1206cos458cos1010coscos2
10

109 +++++=

=

θθθθθθ

n
 

 

4622cos7924cos4956cos2208cos6610cos1212coscos2
12

1211 ++++++=

=

θθθθθθθ

n

 
 
In general 

even n   ..... 
)!

2
)(!

2
(

!2/1...                                                                                  

...)4cos(
!2

)1()2cos(coscos2 1

nn
n

nnnnnnnn

+

+−
−

+−+=− θθθθ

….7.1 

 
 
7.2  for n odd θncos
 
 

θθθ cos33coscos2
3

32 +=

=n
 

 

θθθθ cos103cos55coscos2
5

54 ++=

=n
 

 

θθθθθ cos353cos215cos77coscos2
7

76 +++=

=n
 

 

θθθθθθ cos1263cos845cos367cos99coscos2
9

98 ++++=

=n
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θθθθθθθ cos4623cos3305cos1657cos559cos1111coscos2
11

1110 +++++=

=n
 

 
 
In general: 
 

 oddn   .....cos 
)!

2
1)(!

2
1(

!...                                                            

...)4cos(
!2

)1()2cos(coscos2 1

θ

θθθθ

+−
+

+−
−

+−+=−

nn
n

nnnnnnnn

………..7.2 
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Note 8 Powers of θsin in terms of multiple angles 
 
8.1  for n even. θnsin
 

12cossin2
2

2 +−=

=

θθ

n
 

 

32cos44cossin2
4

43 +−=

=

θθθ

n
 

 

102cos154cos66cossin2
6

65 +−+−=

=

θθθθ

n
 

 

352cos564cos286cos88cossin2
8

87 +−+−=

=

θθθθθ

n
 

 

1262cos2104cos1206cos458cos1010cossin2
10

109 +−+−+−=

=

θθθθθθ

n
 

 

4622cos7924cos4956cos2208cos6610cos1212cossin2
12

1211 +−+−+−=

=

θθθθθθθ

n

 
 
In general 

even n   ..... 
)!

2
)(!

2
(

!2/1)1(...                                                                  

...)4cos(
!2

)1()2cos(cossin2)1(

2/

12/

nn
n

nnnnnn

n

nnn

−+

−−
−

+−−=− − θθθθ

………8.1 

 
 
8.2  for n odd. θnsin
 

θθθ sin33sinsin2
3

32 +−=

=n
 

 

θθθθ sin103sin55sinsin2
5

54 +−=

=n
 

 

θθθθθ sin353sin215sin77sinsin2
7

76 +−+−=

=n
 

 

θθθθθθ sin1263sin845sin367sin99sinsin2
9

98 +−+−=

=n
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θθθθθθθ sin4623sin3305sin1657sin559sin1111sinsin2
11

1110 +−+−+−=

=n
 



 

 
 
In general: 

 oddn   .....sin 
)!

2
1)(!

2
1(

!)1(...                                                 

...)4sin(
!2

)1()2sin(sinsin2)1(

2/)1(

12/)1(

θ

θθθθ
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−

+−−=−
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….8.2 
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Note 9  θθ nn sincos +
9.1 for n even, n/2 even. θθ nn sincos +
 
n=4 

34cos)sin(cos2 442 +=+ θθθ   
n=8 

354cos288cos)sin(cos2 886 ++=+ θθθθ  
n=12 

4624cos4958cos6612cos)sin(cos2 121210 +++=+ θθθθθ  
 
In general: 
 

even  n/2even,n   ..... 
)!

2
)(!

2
(

!2/1...                                                             

...)8cos(
!4

)3)(2)(1(                                                

)4cos(
!2

)1(cos)sin(cos2 2

nn
n

nnnnn

nnnnnnn

+

+−
−−−

+

−
−

+=+−

θ

θθθθ

……9.1 

 
9.2   for n even, n/2 odd. θθ nn sincos +
 
n=2 

1)sin(cos 22 =+ θθ   
n=6 

104cos6)sin(cos2 664 +=+ θθθ  
n=10 

1264cos1208cos10)sin(cos2 10108 ++=+ θθθθ  
 
In general: 
 

 odd n/2even,n   ..... 
)!

2
)(!

2
(

!2/1...                                                             

...)10cos(
!5

)4)(3)(2)(1(                                                

)6cos(
!3

)2)(1()2cos()sin(cos2 2

nn
n

nnnnnn

nnnnnnnnn

+

+−
−−−−

+

−
−−

+−=+−

θ

θθθθ

……9.2 
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9.3 for n odd. θθ nn sincos +



 

 
n=3 

)sin(cos3)3sin3(cos)sin(cos2 332 θθθθθθ ++−=+   
n=5 

)sin(cos10)3sin3(cos5)5sin5(cos)sin(cos2 554 θθθθθθθθ ++−++=+  
n=7 

)sin(cos35)3sin3(cos21)5sin5(cos7)7sin7(cos)sin(cos2 776 θθθθθθθθθθ ++−+++−=+
 n=9 

)sin(cos126)3sin3(cos84                                 
)5sin5(cos36)7sin7(cos9)9sin9(cos)sin(cos2 998

θθθθ
θθθθθθθθ

++−+
++−++=+

 

n=11 

)sin(cos462)3sin3(cos330)5sin5(cos165                                    
)7sin7(cos55)9sin9(cos11)11sin11(cos)sin(cos2 111110

θθθθθθ
θθθθθθθθ

++−+++
−+++−=+

 
 
In general: 
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 oddn                 )sin(cos 
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Note 10.  Rational Values of  θθ nn sincos +
 
10.1 n even, n/2 even 
 
From eqn 9.1 reproduced below, the possible values of n are 4,8,12,16 …  

even  n/2even,n   ..... 
)!

2
)(!

2
(

!2/1...                                                             

...)8cos(
!4

)3)(2)(1(                                                

)4cos(
!2

)1(cos)sin(cos2 2

nn
n

nnnnn

nnnnnnn

+

+−
−−−

+

−
−

+=+−

θ

θθθθ

…..10.1 

 
 Table 10.1.1 shows the values of θn  which make θncos  rational. Examples are 
given for n=4, 8, 12 and 16. The angles in common for °<< 900 θ  are 

. °°°°°°° 75 and 5.67,60,45,30,5.22,15
 
For these angles the rhs of eqn 10.1 is rational for all n even, n/2 even  
 
That is for  °<< 900 θ ,  is rational for θθ nn sincos +

°°°°°°°= 75 and 5.67,60,45,30,5.22,15θ  and n=4,8,12,16….. 
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Theta for which cos n theta are rationa l; n=1

Theta 0 1 2 3 4 5 6 7 8 9 10 11 12
180 k +90 90 270 450 630 810 990 1170 1350 1530 1710 1890 2070 2250
360 k + 60 60 420 780 1140 1500 1860 2220 2580 2940 3300 3660 4020 4380
360k - 60 -60 300 660 1020 1380 1740 2100 2460 2820 3180 3540 3900 4260
180k +60 60 240 420 600 780 960 1140 1320 1500 1680 1860 2040 2220
180k-60 -60 120 300 480 660 840 1020 1200 1380 1560 1740 1920 2100
360k 0 360 720 1080 1440 1800 2160 2520 2880 3240 3600 3960 4320
180k 0 180 360 540 720 900 1080 1260 1440 1620 1800 1980 2160

Theta for which cos n theta are rationa l; n=4
Theta k=0 1 2 3 4 5 6 7 8 9 10 11 12
180 k +90 22.5 67.5 112.5 157.5 202.5 247.5 292.5 337.5 382.5 427.5 472.5 517.5 562.5
360 k + 60 15 105 195 285 375 465 555 645 735 825 915 1005 1095
360k - 60 -15 75 165 255 345 435 525 615 705 795 885 975 1065
180k +60 15 60 105 150 195 240 285 330 375 420 465 510 555
180k-60 -15 30 75 120 165 210 255 300 345 390 435 480 525
360k 0 90 180 270 360 450 540 630 720 810 900 990 1080
180k 0 45 90 135 180 225 270 315 360 405 450 495 540

Theta for which cos n theta are rationa l; n=8
Theta k=0 1 2 3 4 5 6 7 8 9 10 11 12
180 k +90 11.25 33.75 56.25 78.75 101.25 123.75 146.25 168.75 191.25 213.75 236.25 258.75 281.25
360 k + 60 7.5 52.5 97.5 142.5 187.5 232.5 277.5 322.5 367.5 412.5 457.5 502.5 547.5
360k - 60 -7.5 37.5 82.5 127.5 172.5 217.5 262.5 307.5 352.5 397.5 442.5 487.5 532.5
180k +60 7.5 30 52.5 75 97.5 120 142.5 165 187.5 210 232.5 255 277.5
180k-60 -7.5 15 37.5 60 82.5 105 127.5 150 172.5 195 217.5 240 262.5
360k 0 45 90 135 180 225 270 315 360 405 450 495 540
180k 0 22.5 45 67.5 90 112.5 135 157.5 180 202.5 225 247.5 270
common theta for n=8 and 4

0 15 22.5 30 45 60 67.5 75 90 105 112.5 120 135 150
Theta for which cos n theta are rationa l; n=12

Theta k=0 1 2 3 4 5 6 7 8 9 10 11 12
180 k +90 7.5 22.5 37.5 52.5 67.5 82.5 97.5 112.5 127.5 142.5 157.5 172.5 187.5
360 k + 60 5 35 65 95 125 155 185 215 245 275 305 335 365
360k - 60 -5 25 55 85 115 145 175 205 235 265 295 325 355
180k +60 5 20 35 50 65 80 95 110 125 140 155 170 185
180k-60 -5 10 25 40 55 70 85 100 115 130 145 160 175
360k 0 30 60 90 120 150 180 210 240 270 300 330 360
180k 0 15 30 45 60 75 90 105 120 135 150 165 180
common theta for n=12, 8  and 4

0 15 22.5 30 45 60 67.5 75 90 105 112.5 120 135 150
Theta for which cos n theta are rationa l; n=16

Theta k=0 1 2 3 4 5 6 7 8 9 10 11 12
180 k +90 5.625 16.875 28.125 39.375 50.625 61.875 73.125 84.375 95.625 106.875 118.125 129.375 140.625
360 k + 60 3.75 26.25 48.75 71.25 93.75 116.25 138.75 161.25 183.75 206.25 228.75 251.25 273.75
360k - 60 -3.75 18.75 41.25 63.75 86.25 108.75 131.25 153.75 176.25 198.75 221.25 243.75 266.25
180k +60 3.75 15 26.25 37.5 48.75 60 71.25 82.5 93.75 105 116.25 127.5 138.75
180k-60 -3.75 7.5 18.75 30 41.25 52.5 63.75 75 86.25 97.5 108.75 120 131.25
360k 0 22.5 45 67.5 90 112.5 135 157.5 180 202.5 225 247.5 270
180k 0 11.25 22.5 33.75 45 56.25 67.5 78.75 90 101.25 112.5 123.75 135
common theta for n=16, 12, 8  and 4

0 15 22.5 30 45 60 67.5 75 90 105 112.5 120 135 150

k=
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Table 10.1.1 Values of θ  for which θncos  are rational. Examples for n=1, 4, 8, 12, 16 



 

 
10.2 n even, n/2 odd 
Eqn. 9.2 is reproduced below. 
 

 odd n/2even,n   ..... 
)!

2
)(!

2
(

!2/1...                                                             

...)10cos(
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)4)(3)(2)(1(                                                
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nn
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nnnnnn

nnnnnnnnn

+

+−
−−−−

+

−
−−

+−=+−

θ

θθθθ

…10.2 

 
Values of n >2 that satisfy equation 10.2 are 6,10,14,18  For the lhs of this equation 
to be rational θθθ 12cos ,8cos,4cos  have to be rational. This is the same case as n 
even, n/2 even above in Note 10.1.   
 
Therefore for °<< 900 θ   is  rational for θθ nn sincos +

°°°°°°°= 75 and 5.67,60,45,30,5.22,15θ  with n=2, 6,10,14,18….. 
 
For n=2 the rhs is an integer n. 
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10.3 n odd 
 
Eqn 9.3 is reproduced below. 
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Tables 10.3.1 (a) and (b) show that the common values of θ  
for which θncos and θnsin are simultaneously rational are 0,90,180,270, 360…..,k90 
where k=0,1,2….  
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Therefore there is no rational value for  for n odd for θθ nn sincos + 900 <<θ . 



 

Theta for which cos n theta is rational n = 1

Theta  0 1 2 3 4 5 6 7 8
180 k +90 90.0 270.0 450.0 630.0 810.0 990.0 1170.0 1350.0 1530.0
360 k + 60 60.0 420.0 780.0 1140.0 1500.0 1860.0 2220.0 2580.0 2940.0
360k - 60 -60.0 300.0 660.0 1020.0 1380.0 1740.0 2100.0 2460.0 2820.0
180k +60 60.0 240.0 420.0 600.0 780.0 960.0 1140.0 1320.0 1500.0
180k-60 -60.0 120.0 300.0 480.0 660.0 840.0 1020.0 1200.0 1380.0
360k 0.0 360.0 720.0 1080.0 1440.0 1800.0 2160.0 2520.0 2880.0
180k 0.0 180.0 360.0 540.0 720.0 900.0 1080.0 1260.0 1440.0
Theta for which sin n theta is rational n= 1

Theta  0 1 2 3 4 5 6 7 8
180 k 0.0 180.0 360.0 540.0 720.0 900.0 1080.0 1260.0 1440.0
360 k + (90+60) 150.0 510.0 870.0 1230.0 1590.0 1950.0 2310.0 2670.0 3030.0
360k +30 30.0 390.0 750.0 1110.0 1470.0 1830.0 2190.0 2550.0 2910.0
180k +(90+60) 150.0 330.0 510.0 690.0 870.0 1050.0 1230.0 1410.0 1590.0
180k+(90-60) 30.0 210.0 390.0 570.0 750.0 930.0 1110.0 1290.0 1470.0
360k+90 90.0 450.0 810.0 1170.0 1530.0 1890.0 2250.0 2610.0 2970.0
360k+270 270.0 630.0 990.0 1350.0 1710.0 2070.0 2430.0 2790.0 3150.0

Common theta for rational sin n theta and cos n theta n=1 =90k
90 180 270 360 450 540 630 720 810 900

Theta for which cos n theta is rational n = 3
Theta  0 1 2 3 4 5 6 7 8
180 k +90 30.0 90.0 150.0 210.0 270.0 330.0 390.0 450.0 510.0
360 k + 60 20.0 140.0 260.0 380.0 500.0 620.0 740.0 860.0 980.0
360k - 60 -20.0 100.0 220.0 340.0 460.0 580.0 700.0 820.0 940.0
180k +60 20.0 80.0 140.0 200.0 260.0 320.0 380.0 440.0 500.0
180k-60 -20.0 40.0 100.0 160.0 220.0 280.0 340.0 400.0 460.0
360k 0.0 120.0 240.0 360.0 480.0 600.0 720.0 840.0 960.0
180k 0.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0 480.0

Theta for which sin n theta is rational n = 3
Theta  0 1 2 3 4 5 6 7 8
180 k 0.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0 480.0
360 k + (90+60) 50.0 170.0 290.0 410.0 530.0 650.0 770.0 890.0 1010.0
360k +30 10.0 130.0 250.0 370.0 490.0 610.0 730.0 850.0 970.0
180k +(90+60) 50.0 110.0 170.0 230.0 290.0 350.0 410.0 470.0 530.0
180k+(90-60) 10.0 70.0 130.0 190.0 250.0 310.0 370.0 430.0 490.0
360k+90 30.0 150.0 270.0 390.0 510.0 630.0 750.0 870.0 990.0
360k+270 90.0 210.0 330.0 450.0 570.0 690.0 810.0 930.0 1050.0

Common theta for rational sin n theta and cos n theta n=1 and 3 =90k
90 180 270 360 450 540 630 720 810 900

k=

k=
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Table 10.3.1 (a) Rational values of θncos  and θnsin for n=1 and 3 and the common θ . 



 

 
Theta for which cos n theta is rational n = 5
Theta   0 1 2 3 4 5 6 7 8
180 k +90 18.0 54.0 90.0 126.0 162.0 198.0 234.0 270.0 306.0
360 k + 60 12.0 84.0 156.0 228.0 300.0 372.0 444.0 516.0 588.0
360k - 60 -12.0 60.0 132.0 204.0 276.0 348.0 420.0 492.0 564.0
180k +60 12.0 48.0 84.0 120.0 156.0 192.0 228.0 264.0 300.0
180k-60 -12.0 24.0 60.0 96.0 132.0 168.0 204.0 240.0 276.0
360k 0.0 72.0 144.0 216.0 288.0 360.0 432.0 504.0 576.0
180k 0.0 36.0 72.0 108.0 144.0 180.0 216.0 252.0 288.0

Theta for which sin n theta is rational n= 5
Theta   0 1 2 3 4 5 6 7 8
180 k 0.0 36.0 72.0 108.0 144.0 180.0 216.0 252.0 288.0
360 k + (90+60) 30.0 102.0 174.0 246.0 318.0 390.0 462.0 534.0 606.0
360k +30 6.0 78.0 150.0 222.0 294.0 366.0 438.0 510.0 582.0
180k +(90+60) 30.0 66.0 102.0 138.0 174.0 210.0 246.0 282.0 318.0
180k+(90-60) 6.0 42.0 78.0 114.0 150.0 186.0 222.0 258.0 294.0
360k+90 18.0 90.0 162.0 234.0 306.0 378.0 450.0 522.0 594.0
360k+270 54.0 126.0 198.0 270.0 342.0 414.0 486.0 558.0 630.0

Common theta for rational s in n theta and cos n theta n=1, 3 and 5 =90k
90 180 270 360 450 540 630 720 810 900

Theta for which cos n theta is rational n = 7
Theta  0 1 2 3 4 5 6 7 8
180 k +90 12.9 38.6 64.3 90.0 115.7 141.4 167.1 192.9 218.6
360 k + 60 8.6 60.0 111.4 162.9 214.3 265.7 317.1 368.6 420.0
360k - 60 -8.6 42.9 94.3 145.7 197.1 248.6 300.0 351.4 402.9
180k +60 8.6 34.3 60.0 85.7 111.4 137.1 162.9 188.6 214.3
180k-60 -8.6 17.1 42.9 68.6 94.3 120.0 145.7 171.4 197.1
360k 0.0 51.4 102.9 154.3 205.7 257.1 308.6 360.0 411.4
180k 0.0 25.7 51.4 77.1 102.9 128.6 154.3 180.0 205.7

Theta for which sin n theta is rational n= 7
Theta  0 1 2 3 4 5 6 7 8
180 k 0.0 25.7 51.4 77.1 102.9 128.6 154.3 180.0 205.7
360 k + (90+60) 21.4 72.9 124.3 175.7 227.1 278.6 330.0 381.4 432.9
360k +30 4.3 55.7 107.1 158.6 210.0 261.4 312.9 364.3 415.7
180k +(90+60) 21.4 47.1 72.9 98.6 124.3 150.0 175.7 201.4 227.1
180k+(90-60) 4.3 30.0 55.7 81.4 107.1 132.9 158.6 184.3 210.0
360k+90 12.9 64.3 115.7 167.1 218.6 270.0 321.4 372.9 424.3
360k+270 38.6 90.0 141.4 192.9 244.3 295.7 347.1 398.6 450.0

Common theta for rational s in n theta and cos n theta n=1, 3, 5and 7 =90k
90 180 270 360 450 540 630 720 810 900  
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Table 10.3.1 (b) Rational values of θncos  and θnsin for n=5 and 7 and the common θ .



 

 
 
As a summary this Note shows that for °<<° 900 θ   is only rational 
for  and for n even.  

θθ nn sincos +
°°°°°°°= 75and56760453052215   ., , , , ., θ

 
For all other θ  where °<<° 900 θ  and for all other n, is irrational.  θθ nn sincos +
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Note 11. Rational values of   2)sin(cos θθ nn +
 
Note 10 has shown that for °<<° 900 θ , is rational for n even and )sin(cos θθ nn +

°= 75 and 5.67,60,45,30,5.22,15θ . For n odd there are no rational values over the 
same angular range.  
In this section we find the rational values of  over the same angular 
range. 

2)sin(cos θθ nn +

 
By expansion, 
 

2)sin(cos θθ nn + =  θθθθ nnnn sincos2sincos 22 ++
 

Since 

θθ nn sincos2 = = =n)sin(cos2 θθ n)2/2(sin2 θ 12
2sin
−n

n θ
 

         =  122 2/2sinsincos −++ nnnn θθθ
 

11.1 n even 
 
The first part of the expansion is  , k even θθθθ kknn sincossincos 22 +≡+
 
and as above is rational for °= 75 and 5.67,60,45,30,5.22,15θ . 
 

θ2sin n is given by the expansion of eqn. 8.1 reproduced below, 
 

even n   ..... 
)!

2
)(!

2
(

!2/1)1(...                                                                  

...2)4cos(
!2

)1(2)2cos(2cos2sin2)1(

2/

12/

nn
n

nnnnnn

n

nnn

−+

−−
−

+−−=− − θθθθ

 

 
 
This is rational for rational ....)122cos(,)82cos(,)42cos(,2cos θθθθ −−− nnnn for n 
even i.e n=4,8,12,16…. 
 
These are the same values of n as given in Table 10.1.1 for . )sin(cos θθ nn +
 

θ2sin n is therefore rational for °= 75 and 5.67,60,45,30,5.22,15θ . 
 
The values of θ  which are common for rational   and  i.e. 

 are therefore 
θθ nn 22 sincos + θ2sin n

2)sin(cos θθ nn + °= 75 and 5.67,60,45,30,5.22,15θ i.e. 
 for n even is rational for 2)sin(cos θθ nn + °= 75 and 5.67,60,45,30,5.22,15θ  
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11.2 n odd 



 

 
For the first part of the expansion k is even as 
before for n odd, therefore rational values of this are as before  

θθθθ kknn sincossincos 22 +≡+

°= 75 and 5.67,60,45,30,5.22,15θ . 
θ2sin n  for n odd is given by eqn 8.2  reproduced below for θθ 2⇒  

 

 oddn   .....sin2 
)!

2
1)(!

2
1(

!)1(...                                                 

...2)4sin(
!2

)1(2)2sin(2sin2sin2)1(

2/)1(

12/)1(

θ

θθθθ

+−
−+

−−
−

+−−=−

−

−−

nn
n

nnnnnn

n

nnn

 

 
This is rational for rational ....)122sin(,)82sin(,)42sin(,2sin θθθθ −−− nnnn for n odd 
i.e for n=2,6,10,14… 
 
Table 10.1.2 shows that this corresponds to °= 75 and 45,15θ . 
Therefore the θ  in common for  and  for n odd are θθ nn 22 sincos + θ2sin n

°= 75 and 45,15θ  i.e.  for n odd is rational for 2)sin(cos θθ nn + °= 75 and 45,15θ  
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Theta for which sin n theta is rational n= 12n=2

Theta  0 1 2 3 4 5 6 7 8
180 k 0.0 90.0 180.0 270.0 360.0 450.0 540.0 630.0 720.0
360 k + (90+60) 75.0 255.0 435.0 615.0 795.0 975.0 1155.0 1335.0 1515.0
360k +30 15.0 195.0 375.0 555.0 735.0 915.0 1095.0 1275.0 1455.0
180k +(90+60) 75.0 165.0 255.0 345.0 435.0 525.0 615.0 705.0 795.0
180k+(90-60) 15.0 105.0 195.0 285.0 375.0 465.0 555.0 645.0 735.0
360k+90 45.0 225.0 405.0 585.0 765.0 945.0 1125.0 1305.0 1485.0
360k+270 135.0 315.0 495.0 675.0 855.0 1035.0 1215.0 1395.0 1575.0

Theta for which sin n theta is rational n = 32n=6
Theta  0 1 2 3 4 5 6 7 8
180 k 0.0 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0
360 k + (90+60) 25.0 85.0 145.0 205.0 265.0 325.0 385.0 445.0 505.0
360k +30 5.0 65.0 125.0 185.0 245.0 305.0 365.0 425.0 485.0
180k +(90+60) 25.0 55.0 85.0 115.0 145.0 175.0 205.0 235.0 265.0
180k+(90-60) 5.0 35.0 65.0 95.0 125.0 155.0 185.0 215.0 245.0
360k+90 15.0 75.0 135.0 195.0 255.0 315.0 375.0 435.0 495.0
360k+270 45.0 105.0 165.0 225.0 285.0 345.0 405.0 465.0 525.0

Common theta for rational sin n theta  n=1 and 3 
15 45 75 90 105 135 165 180

Theta for which sin n theta is rational n= 52n=10
Theta   0 1 2 3 4 5 6 7 8
180 k 0.0 18.0 36.0 54.0 72.0 90.0 108.0 126.0 144.0
360 k + (90+60) 15.0 51.0 87.0 123.0 159.0 195.0 231.0 267.0 303.0
360k +30 3.0 39.0 75.0 111.0 147.0 183.0 219.0 255.0 291.0
180k +(90+60) 15.0 33.0 51.0 69.0 87.0 105.0 123.0 141.0 159.0
180k+(90-60) 3.0 21.0 39.0 57.0 75.0 93.0 111.0 129.0 147.0
360k+90 9.0 45.0 81.0 117.0 153.0 189.0 225.0 261.0 297.0
360k+270 27.0 63.0 99.0 135.0 171.0 207.0 243.0 279.0 315.0

Common theta for rational sin n theta and cos n theta n=1, 3 and 5 
15 45 75 90 105 135 165 180

Theta for which sin n theta is rational n= 72n=14
Theta  0 1 2 3 4 5 6 7 8
180 k 0.0 12.9 25.7 38.6 51.4 64.3 77.1 90.0 102.9
360 k + (90+60) 10.7 36.4 62.1 87.9 113.6 139.3 165.0 190.7 216.4
360k +30 2.1 27.9 53.6 79.3 105.0 130.7 156.4 182.1 207.9
180k +(90+60) 10.7 23.6 36.4 49.3 62.1 75.0 87.9 100.7 113.6
180k+(90-60) 2.1 15.0 27.9 40.7 53.6 66.4 79.3 92.1 105.0
360k+90 6.4 32.1 57.9 83.6 109.3 135.0 160.7 186.4 212.1
360k+270 19.3 45.0 70.7 96.4 122.1 147.9 173.6 199.3 225.0

Common theta for rational sin n theta and cos n theta n=1, 3, 5and 7 
15 45 75 90 105 135 165 180

k=
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Table 11.1.2 θ  for which  for n odd is rational. θ2sin n



 

Note 12  
 
Proof that if  
 
 
 

 
 
Note 11 has shown that except for °= 75 and 5.67,60,45,30,5.22,15θ for n even and 

°= 45 and 15θ  for n odd,  is irrational. Therefore the above note 
shows that  is also irrational.  

2)sin(cos θθ nn +
nnn /2)sin(cos θθ +
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Note 13. For rational showing that  is 
irrational. 

2)sin(cos θθ nn + nnn /2)sin(cos θθ +

 
Since  is symmetric about  i.e.  

 we only have to show  is irrational for 

2)sin(cos θθ nn + °45 2)15sin15(cos nn +
2)75sin75(cos nn +≡ nnn /2)sin(cos θθ +
°= 45 and 30,5.22,15θ for n even and °= 45 and 15θ  for n odd. i.e we have to show 

that for all n  is irrational for nnn /2)sin(cos θθ + °= 45 and 15θ  whereas for n even 
only it has to be shown that is irrational for  nnn /2)sin(cos θθ + °= 30 and 5.22θ . This 
is shown below. 
 
 
13.1  15°=θ  
 
Substituting  15°=θ for n=2 into eqn 7.1 and 8.1 gives, 
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Now, 
 

2)15sin15(cos nn +  =  122 2/30sin15sin15cos −++ nnnn

 
where,   
 

n
n

2
130sin = , 

nnnn
nn

4
2

2
2

2
1.

2
12/30sin 21

1 ===∴ −
− . 

and, 

nn
n

n

nn
nn S

B
==

−++
=+

44
)32()32(15sin15cos 22 . 

∴ 2)15sin15(cos nn + = n
nB
4

)2( +
=  n

n
n RS =+ 4/2

 
Using the binomial expansion for n integer, 
 

[ ] ( ) [ ] ( ) [ ] ( ) ( ) ( )nnnnnnnnnn 31...3)2(3)2(3)2()2()32(
33

3

22
2

1
1 ±++±+±=± −−−  

 
nn )32()32( −++  
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[ ] [ ] [ ]
oddn              0                                                                                                         

evenn      )3(2...)3(22)3(22)3(22)2(2 n66
6

44
4

22
2

+

+++++== −−− nnnnnnn
nB  



 

where [ ]jn  is the binomial coefficient 
)!(!

!
jnj

n
−

 which is an integer. 

 
It can be seen from this expansion that for all n, is an integer since the powers of nB

3  are always even. Therefore is always rational as Note 10 showed. nS
 
Some values of are shown in below. nB
 
 
 

n 
nB  nF  

1 4 6 
2 14 4 
3 52 3.77976 
4 194 3.74166 
5 724 3.73411 
6 2702 3.73251 

 
Table 13.1.1 Values of and . nB nF
 
Showing the nth root of  is irrational. nR
 

44
)2(

)15sin15(cos)(
/1

/2/1 n
n

nnnnn
n

FB
R =

+
=+=  

 
Since )2(B and n +nB are integers, corollary 2 of Note 5 states that  is 
either integer or irrational. 

n
nB /1)2( +

 
But Table 13.1.1 shows that  is not an integer since,nF 2   43 >∀<< nFn . is 
therefore irrational. 

nF

 
For large ,  n

73205.3 )32( =+⇒nF . 
 
Therefore  is irrational for n>2. nnn

nF /2)15sin15(cos4/ +=
 
For n=2 we get the familiar identity, 
 

1)15sin15(cos4/ 2/222
2 =+=F  

 
13.2  5.22 °=θ , n even. 
 
Substituting  5.22 °=θ for n=2 into eqn 7.1 and 8.1 gives, 
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Now, 
 

2)5.22sin5.22(cos nn +  =  122 2/45sin5.22sin5.22cos −++ nnnn

 
where,   
 

n
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Again using the binomial expansion 
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where [ ]jn  is the binomial coefficient 
)!(!

!
jnj

n
−

 which is an integer. 

 
It can be seen from this expansion that for n even is an integer since the powers of nB

2  are always even. 
 
Some values of are shown in below. nB
 

n 
nB  nF  

2 6 2.8284=  2/32
4 34 2.4495 
6 198 2.4183 
8 1154 2.4147 

10 6726 2.4143 
20 45239074 2.4142 

 
Table 13.2.1 Values of . nn FB  and 
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Showing the nth root of  is irrational. nR
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Since )2(B and n +nB are integers, corollary 2 of Note 5 states that  is 
either an integer or irrational. 

n
nn BF /1)2( +=

 
But Table 13.2.1 shows that  is not an integer since,nF 2   32 >∀<< nFn . is 
therefore irrational. 

nF

 
For large ,  n

4142.2 )12( =+⇒nF . 
 
Let, 
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If  is irrational then  is irrational unless  has n

nA /1)( n
nR /1)( n

nA /1)( 22  as a ‘factor’ 

(e.g 3/2π  is irrational so is π  but 3/23/2
=

π
π

 which is rational.) 

 
Case 1(a) Integer Factor 

By way of contradiction assume 22)( /1
n

n
n ZA =  where is an integer 

factor. 
nZ

Then nn
nn ZA )22()(=  

Since  is an integer so is  nZ n
n

n EZ =)(

even.n  integer,an  is  
)22( n

n
n

A
E =∴  

But Table 13.2.2  shows that 2even    1 >∀< nEn . Therefore there is a contradiction 
and the assumption is false. 
 
 

n  even 2+= nn BA  n)22(  nE  
2 6 8 1.0000 
4 34 64 0.5625 
6 198 512 0.3906 
8 1154 4096 0.2822 

10 6726 32768 0.2053 
30 45239074 1073741824 0.0086 

Table 13.2.2 Values of . nE
 
For large ,  n

0which 0.854 )2/1)22/(1( n ⇒=+⇒ n
nE  as ∞⇒n . 
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Case 1(b) Rational Factor.  



 

By way of contradiction assume )22()( /1
n

n
n QA =  where is a rational factor. nQ

Then nn
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integer.an  is   where)()( n

n
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n

nn AP /1)(=∴  
 
But Table 13.2.3 shows that is not an integer. Therefore there is a contradiction 
and the assumption is incorrect. 

nP

 
 

n  even 
nA  nP  

2 6 2.8284=  2/32
4 34 2.4495 
6 198 2.4183 
8 1154 2.4147 

10 6726 2.4143 
30 45239074 2.4142 

Table 13.2.3 Values of . nP
 
For 4142.2)12(   , =+⇒∞⇒ nPn  
 
Therefore since  is irrational and doesn’t have n

nn AF /1)(= 222 2/3 =  as an integral 

or rational factor,  is irrational for n even 
>2. 

nnnn
nn RF /2/12/3 )5.22sin5.22(cos)(2/ +==

 
For n=2 we get the familiar identity, 
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1)5.22sin5.22(cos2/ 2/2222/3
2 =+=F



 

13.3 °= 30θ  n even. 
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n
nnnn

2
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∴ 2)30sin30(cos nn + = n
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4
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= nn
n R

B
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As n is even, is an integer since the powers of nB 3  are always even.  
Some values of are shown in below. nB
 
 
 

n 
nB  nF  

2 16 4 
4 100 3.16228 
6 784 3.03659 
8 6724 3.00922 

10 59536 3.00247 
20 3486902500 3.00001 

 
Table 13.3.1 Values of and . nB nF
 
Showing the nth root of  is irrational. nR
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Since  is an integer, corollary 2 of Note 5 states that  is either an 
integer or irrational. 

nB n
nn BF /1)(=

 
But Table 13.3.1 shows that  is not an integer since,nF 2   43 >∀<< nFn . is 
therefore irrational. 

nF

 
For large ,  n

3 ))3(( 1/n2 =⇒ n
nF . 

 
Therefore  is irrational for n even >2. nnn

nF /2)30sin30(cos4/ +=
 
For n=2 we get the familiar identity, 

1)30sin30(cos4/ 2/222
2 =+=F  
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13.4  45°=θ for all n. 
 

2/)2/(2)2/1(2)2/1()2/1(45sin45cos nnnnnn ==+=+  
 

∴ 2)45sin45(cos nn + = n2
4

=  nR

which is rational. 
 

n
nR /1)( = 

2
4 /1 n

 

 
 

n n/14  
1 4 
2 2 
3 1.58740 
4 1.41421 
5 1.31951 

20 1.07177 
 
Table 13.4.1 Values of   nB
 
Corollary 2 of Note 5 states that  is either an integer or irrational. n/14
 
But Table 13.4.1 shows that  for n>2  is not an integer and is therefore irrational. n/14
 
For large ,  n

14 /1 ⇒n . 
 
Therefore  is irrational for n  >2. nnnnn

nR /2/1/1 )45sin45(cos2/4)( +==
 
For n=2 we get the familiar identity, 
 

1)45sin45(cos2/4 2/2222/1 =+=  
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Appendix 1 History of Trigonometric Functions.  
(e.g.http://wwwgroups.dcs.stand.ac.uk/~history/HistTopics/Trigonometric_functions.html). 
 
The following is lifted from the above web reference and shows that Fermat had 
access to sine and cosine tabulations about the time of the formulation of his Last 
Theorem. 
 
The Arabs worked with sines and cosines and by 980 Abu'l-Wafa knew that  

sin 2x = 2 sin x cos x  
although it could have easily have been deduced from Ptolemy's formula sin(x + y) = 
sin x cos y + cos x sin y with x = y.  
 
The Hindu word jya for the sine was adopted by the Arabs who called the sine jiba, a 
meaningless word with the same sound as jya. Now jiba became jaib in later Arab 
writings and this word does have a meaning, namely a 'fold'. When European authors 
translated the Arabic mathematical works into Latin they translated jaib into the word 
sinus meaning fold in Latin. In particular Fibonacci's use of the term sinus rectus 
arcus soon encouraged the universal use of sine.  
 
Chapters of Copernicus's book giving all the trigonometry relevant to astronomy was 
published in 1542 by Rheticus. Rheticus also produced substantial tables of sines 
and cosines which were published after his death. In 1533 Regiomontanus's work De 
triangulis omnimodis was published. This contained work on planar and spherical 
trigonometry originally done much earlier in about 1464. The book is particularly 
strong on the sine and its inverse.  
 
The term sine certainly was not accepted straight away as the standard notation by 
all authors. In times when mathematical notation was in itself a new idea many used 
their own notation. Edmund Gunter was the first to use the abbreviation sin in 1624 in 
a drawing. The first use of sin in a book was in 1634 by the French mathematician 
Hérigone while Cavalieri used Si and Oughtred S.  
 
The cosine follows a similar course of development in notation as the sine. Viète 
used the term sinus residuae for the cosine, Gunter (1620) suggested co-sinus. The 
notation Si.2 was used by Cavalieri, s co arc by Oughtred and S by Wallis.  
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