Computation of Complex Gamma in Special Relativity

Wednesday, 02 January 2002
In special relativity Gamma, γ, is defined as
$\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$,
v is the velocity of an object and
c is the velocity of light.
Normally we say $0 \leq v / c \leq 1$.
In this case, γ is,

$\gamma \Rightarrow \infty$ as $v \Rightarrow c$.
Various things can happen as follows,
Lorentz Contraction. A meter length gets relatively shorter when moving e.g. becomes
0.5 m .
$l=l_{0} / \gamma$, as $v \rightarrow c$ then $\gamma \rightarrow \infty$ and $l \rightarrow 0$.
Here l is its length as seen by the observer at rest. l_{0} is its length when not moving.
According to the metre rod itself it still has a length of l_{0} when moving. It is only the observer who sees (can measure) its length shortened to l.
When $v=c$ then $l=0$ i.e. object doesn't have a length in that direction for all intents and purpose it doesn't exist.

Time Dilation. To the observer a second gets relatively longer when the clock is moving e.g. it becomes 5 seconds.
$t=\gamma t_{0}$, as $v \rightarrow c$ then $\gamma \rightarrow \infty$ and $t \rightarrow \infty$.
When $v=c$ then $t=\infty$ i.e. object doesn't appear to move - it is frozen in time.
Mass Increase. A kilogram gets relatively heavier when moving e.g. becomes 5 kilograms. $m=\gamma \mathrm{m}_{0}$, as $v \rightarrow c$ then $\gamma \rightarrow \infty$ and $m \rightarrow \infty$.

Gamma for Real \mathbf{v}

Mathematically, γ can be defined for $-1 \leq v / c \leq 1$.
as shown below,

Extending this, γ can also be defined mathematically over the range $-\infty \leq v / c \leq \infty$. In this case γ becomes complex, whatever that means for the things above i.e. length contraction, time dilation, mass increase.
In fact for $(v / c)<-1$ and $(v / c)>1 \gamma$ is imaginary as following graph shows,

Complex v

Consider mathematically the value of gamma for complex velocity, v, forgetting what this means physically.
$\therefore v=v_{r}+i v_{i}$
and, $\gamma=\gamma_{r}+i \gamma=\frac{1}{\sqrt{1-\left(v_{r}+i v_{i}\right)^{2} / c^{2}}}$

Real Gamma for v complex

γ_{r} is given in the following graphs

Imaginary Gamma for v complex

γ_{i} is given in the following graphs.

These look like dipole fields i.e N and south magnetic pole and north and north pole or electrically + and - charge of attraction or ++ charge for repulsion. i.e dipole attraction is produced from the real gamma for complex velocity and dipole repulsion is imaginary gamma for complex velocity.

Ties up with particle - wave real - complex components.
A complexon is a generic term which can exhibit wave or particle behaviour depending on the observance of real or imaginary parts of the motion of the vacuum.

Mass- solid energy
Electromagnetic waves - liquid energy
Vacuum - gaseous energy.

As temperature increases goes from M-E-V change of state.

