
Computation of Complex Gamma in Special Relativity Wednesday, 02 January 2002

In special relativity Gamma, γ , is defined as

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}} \,,$$

v is the velocity of an object and c is the velocity of light. Normally we say $0 \le v/c \le 1$. In this case, γ is,

 $\gamma \Rightarrow \infty$ as $v \Rightarrow c$.

Various things can happen as follows,

Lorentz Contraction. A meter length gets relatively shorter when moving e.g. becomes 0.5m.

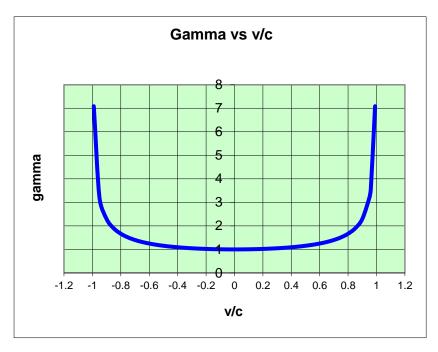
 $l = l_0 / \gamma$, as $v \to c$ then $\gamma \to \infty$ and $l \to 0$.

Here l is its length as seen by the observer at rest. l_0 is its length when not moving.

According to the metre rod itself it still has a length of l_0 when moving. It is only the observer who sees (can measure) its length shortened to l.

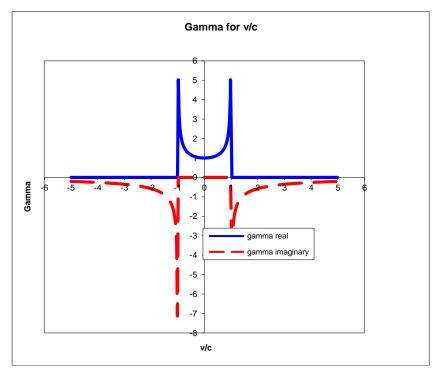
When v = c then l = 0 i.e. object doesn't have a length in that direction for all intents and purpose it doesn't exist.

Time Dilation. To the observer a second gets relatively longer when the clock is moving e.g. it becomes 5 seconds.


 $t = \gamma t_0$, as $v \to c$ then $\gamma \to \infty$ and $t \to \infty$.

When v = c then $t = \infty$ i.e. object doesn't appear to move - it is frozen in time.

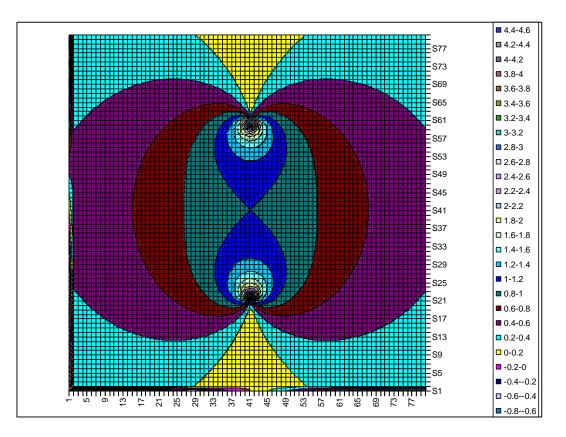
Mass Increase. A kilogram gets relatively heavier when moving e.g. becomes 5 kilograms. $m = \gamma m_0$, as $v \to c$ then $\gamma \to \infty$ and $m \to \infty$.

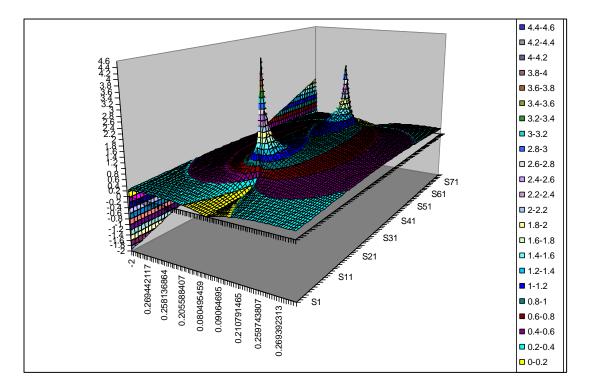

Gamma for Real v

Mathematically, γ can be defined for $-1 \le v/c \le 1$. as shown below,

Extending this, γ can also be defined mathematically over the range $-\infty \le v/c \le \infty$. In this case γ becomes complex, whatever that means for the things above i.e. length contraction, time dilation, mass increase.

In fact for (v/c) < -1 and (v/c) > 1 γ is imaginary as following graph shows,

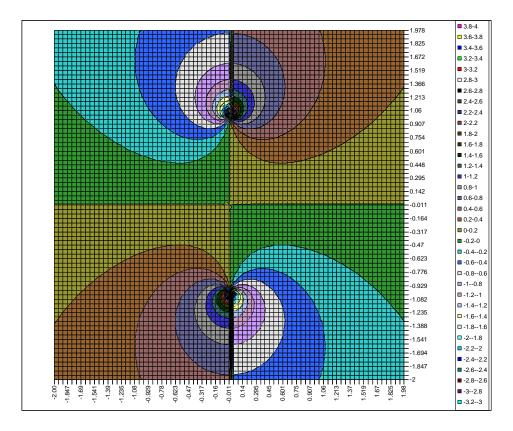

Complex v

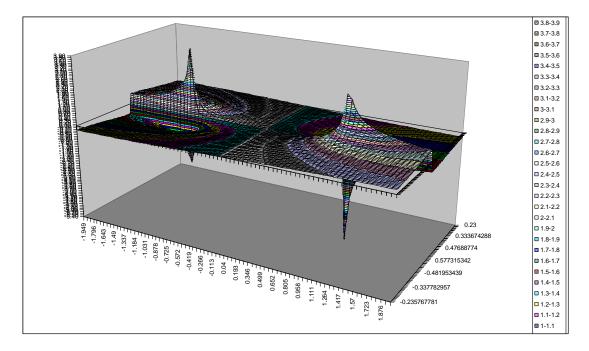

Consider mathematically the value of gamma for complex velocity, v, forgetting what this means physically.

$$\therefore v = v_r + iv_i$$

and, $\gamma = \gamma_r + i\gamma = \frac{1}{\sqrt{1 - (v_r + iv_i)^2/c^2}}$

Real Gamma for v complex


 γ_r is given in the following graphs



Imaginary Gamma for v complex

 γ_i is given in the following graphs.

These look like dipole fields i.e N and south magnetic pole and north and north pole or electrically + and - charge of attraction or + + charge for repulsion. i.e dipole attraction is produced from the real gamma for complex velocity and dipole repulsion is imaginary gamma for complex velocity.

Ties up with particle – wave real – complex components.

A complexon is a generic term which can exhibit wave or particle behaviour depending on the observance of real or imaginary parts of the motion of the vacuum.

Mass- solid energy Electromagnetic waves – liquid energy Vacuum – gaseous energy.

As temperature increases goes from M-E-V change of state.