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Abstract

Fermat’s Last Theorem asserts that there are no non-zero integers x, y, z satisfying xn + yn = zn for any integer
n > 2. Although Professor Wiles’ celebrated proof establishes this result using deep methods from arithmetic
geometry (Appendix A), its technical nature places it beyond the reach of most readers.
This work develops an elementary and visual geometric framework for understanding why Fermat-type equations
admit no integer solutions in certain structured settings. The approach centres on succession-t triples - primitive
Pythagorean triples with a fixed hypotenuse gap - and their associated normalised Fermat plots. For each fixed
t, we show that only finitely many triples require explicit checking; beyond this finite threshold, all rational
directions determined by succession-t triples intersect the Fermat curves xp + yp = 1 (for p > 2) only at irrational
points.
This provides rigorous proofs of Fermat’s equation within infinite families of Pythagorean triples, offering a visual
and accessible complement to the classical theory and illustrating how geometric structure can illuminate special
cases of Fermat’s Last Theorem.
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Fermat’s Last Theorem Graphic

Summary of the Method of Proof for Selective Pythagorean Triples

Referring to Figure 1, a geometrical construction relates the coordinates (a′, b′) of points on the curves xn+yn = 1
for n > 2 to the rational Pythagorean triple coordinates (a, b) for n = 2. In this paper we exhibit special cases
of triples, called succession-t triples, for which the corresponding normalised coordinates (a, b) are rational but
the associated factor (an + bn)1/n is shown to be irrational. Since (a′, b′) is obtained from (a, b) by dividing by
this factor, this leads to the irrationality of (a′, b′) and hence excludes integer Fermat-type solutions in these
succession-t cases.

In more detail, we outline the method to prove the irrationality of succession-t triples when projected onto the
curves (Lp-norms) for n > 2.

• A Pythagorean triple (x, y, z) normalises to (x/z, y/z, 1), giving the rational point (a, b) = (x/z, y/z) on
the unit circle with a2 + b2 = 1.

• Extend the ray from the origin through (a, b) to intersect the Lp-norm curve xn + yn = 1 at (a′, b′), as
illustrated for n = 3 in Figure 1.

• In Appendix F.2 it is shown that (a′, b′) is given in terms of (a, b) by
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a′ =
a(

an + bn
)1/n , b′ =

b(
an + bn

)1/n .
Since a2+ b2 = 1 with 0 < |a|, |b| < 1 and n > 2, we have an+ bn < 1, so (an+ bn)1/n < 1 and consequently
|a′| > |a|, |b′| > |b|.

Rational and irrational points

• Rational points on the n = 2 curve are coordinates (a, b) such that both a and b are rational.

• Irrational points on the n > 2 curves are coordinates (a′, b′) such that at least one of a′ and b′ is irrational.

Figure 1: Rational slope intersecting the normalised Fermat curves (L2 and L3-norms).

• For the succession-t special cases considered in this paper, we show that
(
an + bn

)1/n
is irrational. Since

a, b are rational and at least one is non-zero, dividing by an irrational quantity forces at least one of a′, b′

to be irrational. Thus, the intersections of the Lp-norm curves along these rational rays yield irrational
points, which excludes corresponding integer solutions to xn + yn = zn in these succession-t cases, proving
FLT for these cases.

Introducing Succession-t Pythagorean Triples

What are Succession-t Triples?

These are defined as x2
p + y2

p = z2p = (xp + t)2 where t is an integer and p denotes Pythagorean triples, under the
constraints that (xp, yp, zp) is primitive, i.e. coprime with gcd(xp, yp, zp) = 1 and xp > yp. The constraints take
into account the symmetry of the curves about y = x and eliminate triple multiples.
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Example of Primitive Succession-1 Triples

Here we have x2
p + y2

p = (xp + 1)2 giving
y2
p = 2xp + 1

so that

xp =

(
k2 − 1

)
2

.

These are some solutions: k = 3 :

xp =

(
32 − 1

)
2

giving xp = 4 with k = yp = 3 and zp = xp + 1 = 5 giving triple (4, 3, 5).
k = 5 :

xp =

(
52 − 1

)
2

giving xp = 12 with k = yp = 5 and zp = xp + 1 = 13 giving triple (12, 5, 13).

An Infinite Number of Succession-t Triples

Since k and t are integers, there are a countably infinite (Appendix E) number of xp and yp (=k) , therefore there
are a countably infinite number of succession-t triples.

Parity of Succession-t Triples

Appendix G.7 shows, for a triple (a, b, c) coprime and a > b:

• If t is odd then a is even, b is odd and c is odd.

• If t is even then a is odd, b is even and c is odd.

This will restrict the number of possible integer solutions available.

Existence of Succession-t Triples

Appendix G.3 shows, for (a, b, c) coprime and a > b, not all succession-t triples exist. For example, for t < 100
there are only succession triples for the following t: 1,2,8,9,18,25,32,49,50,72,81,98.
Examples of the first three for t = 18: (55, 48, 73), (91, 60, 109), (187, 84, 205). Examples of the first three for
t = 81: (224, 207, 305), (272, 225, 353), (380, 261, 461).

Describing the Visualisation of Fermat’s Last Theorem

This visualisation is shown in Figure 2 which is a plot of z = (xn + yn)
1
n for various n, normalised by z to become

(Xnormn + Y normn)
1
n = 1, x, y, z ∈ R. Pythagorean triples are the red crosses for n = 2. For example, for the

triple (3, 4, 5) the rational point is (0.6,0.8). FLT states it is not possible to put rational crosses onto the other
curves.
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Figure 2: The Visualisation of Fermat’s Last Theorem xn + yn = zn for various n.

• These curves are named here normalised Fermat Plots (formally known as Lp-norms)

• For n = 2 the curve and markers together are known as the rational points on the unit circle

• The curves are symmetric about y = x

• For n > 3 the curves are non-rational (informally ’irrational’ ) see Appendix B

p-norm (or Lp-norm) Plots

These curves are formally known as p-norms or more generally Lp-norms, the L named for Lebesgue although
generalised by Hungarian mathematician Frigyes Riesz in 1910, where for real p the norm p ≥ 1 ∥(a, b)∥p =

(|a|p + |b|p)1/p.

3D Fermat Plots

The evolution of the visualisation plot is shown in Figure 3 .

As an example, for n = 2 this is a plot of z =
(
x2 + y2

) 1
2 named here as a 3D Fermat plot.
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Figure 3: 3D Fermat plot n = 2. Unit contours of z are shown.

Integer planar cuts in the z axis are examples of superquadrics. Further development towards the visualisation
plot are shown in Appendix C.

Outline of Proof of Irrationality of Selected Succession-t Triples

• Normalising a Pythagorean triple (x, y, z) gives

(a, b, 1) =
(x
z
,
y

z
, 1
)
,

so a2+b2 = 1 with a, b ∈ Q and 0 < |a|, |b| < 1 for a non-trivial triple. For any integer n > 2 and 0 < |u| < 1
we have |u|n < |u|2, hence an+bn < a2+b2 = 1, that is an+bn < 1. Multiplying by zn shows xn+yn < zn;
for example, for the succession-1 triple (4, 3, 5) we have 43 + 33 = 91 < 53 = 125 (Appendix D).

• In general, we will be looking for odd integer (Appendix G.7) solutions for

c′ = c1/n

with x < c′ < x + t, where c = xn + yn and t = z − x. A basic number-theoretic fact is that if c1/n is an
integer then c must be a perfect nth power (Niven [1]); otherwise c′ is irrational. For example, since 91 is
not a perfect cube, c′ = 911/3 is the irrational number 4.4797 . . .. In this example with t = 1 there is no
integer between 4 and 5, and more generally between x and z = x+1, so there is no integer solution to the
succession-1 triple

x3 + y3 = z3 = (x+ 1)3,

or in general to xn + yn = zn = (x+ 1)n.

• Since there are countably infinitely many succession-1 triples, applying the geometrical construction of
Appendix F.2 to each such triple yields a countably infinite family of irrational coordinate intersections on
the Lp-norm curves.

• We will then computationally extend this analysis to succession-t triples for t up to 8 and open the discussion
for larger t.
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Proof of the Irrationality for Succession-1 Triples

Consider the succession-1 Pythagorean triple (xp, yp, zp) so that zp = xp + 1, giving (xp, yp, xp + 1), e.g. (4, 3, 5).

Normalising to zp gives
(

xp

zp
,
xp

zp
, 1
)
, and we label these normalised rational Pythagorean triples (ap, bp), e.g.

(0.8, 0.6) for triple (4, 3, 5). By definition a2
p + b2p = 1, and since ap < 1, bp < 1, raising to a higher power yields

an
p + bnp < 1 for n > 2, e.g. 0.83 + 0.63 < 1, or unnormalised 43 + 33 < 53.

For a succession-1 triple (xp, yp, xp + 1) with n > 2,

xn
p < xn

p + yn
p < (xp + 1)n.

Taking nth roots (monotone for positive numbers),

xp < (xn
p + yn

p )
1/n < xp + 1.

Since there is no integer strictly between xp and xp + 1, (xn
p + yn

p )
1/n cannot be an integer.

A positive integer nth root of an integer is either an integer or irrational, so (xn
p + yn

p )
1/n and its normalisation

(an
p + bnp )

1/n must be irrational.

Substituting these irrational succession-1 values into the equations from the geometrical construction of Ap-
pendix F.2,

a′ =
ap

(an
p + bnp )1/n

, b′ =
bp

(an
p + bnp )1/n

,

and since by definition ap and bp are non-zero rationals and since (an
p + bnp )

1/n is irrational for all n > 2, therefore
(a′

p, b
′
p) is an irrational coordinate. Therefore FLT is proved for a countably infinite number of succession-1 triples.

Proof of Irrationality for Succession-2 Triples

Using the same reasoning as for succession–1 triples, we must show that for a succession–2 triple (xp, yp, xp + 2)
with n > 2,

xp < (xn
p + yn

p )
1/n < xp + 2.

Since the nth root is strictly between two consecutive even integers, the only possible integer value it could take
is the midpoint xp + 1.

Figure 4 lists the first three succession–2 triples:

(15, 8, 17), (35, 12, 37), (63, 16, 65),

indexed by s = 1, 2, 3. For each triple, the only possible integer candidate between xp and xp + 2 is

xp + 1 = 16, 36, 64.

However, since t = 2 is even, the parity analysis of Appendix G.7 shows that any integer solution c′ to (xn
p+yn

p )
1/n

must be odd. The only available candidates xp + 1 are all even. Therefore no integer solution is possible for any
n > 2 for these triples.

This parity obstruction persists for all succession–2 triples, as further examples in Figure 5 demonstrate. Hence
for every succession–2 triple, the value (xn

p + yn
p )

1/n is irrational for all n > 2.

Figure 4: Higher-power values for the first three succession–2 triples. In each case, the only possible integer
candidate is even, while parity requires any solution to be odd. Thus no integer solutions exist for n > 2.
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Figure 5: This shows, for example, there are no possible integer solutions for the first six succession-2
triples.

Succession-3 to 7 Triples

Appendix G.3 shows that, under the constraints of primitivity and the ordering x > y, there are no primitive
succession-t triples for t = 3, 4, 5, 6, 7. These values of t are ruled out by the Euclid parameterisation, which forces

t = 2s2 or t = (r − s)2,

together with the parity and coprimality conditions on (r, s) and the inequalities required by x > y. Since none of
the integers 3, 4, 5, 6, 7 can be written in either of these forms while also satisfying the parity and gcd restrictions,
no primitive triples of these types exist.

In particular, any hypothetical succession-t triple with 3 ≤ t ≤ 7 would have to arise from one of the two Euclid
assignments already used to generate the valid succession-t families. But the only admissible values of t produced
by these assignments are those appearing in the existing families (e.g. t = 1, 2, 8, 9, 18, . . . ). Thus the cases t = 3
to t = 7 introduce no new behaviour: they are already implicitly accounted for by the structural constraints of
the Euclid parameterisation. In this sense, the “missing” succession-t triples for 3 ≤ t ≤ 7 are not new families
at all, but simply values of t that cannot occur within the primitive Pythagorean framework.

Proof of Irrationality for Succession-8 Triples

For a succession–8 triple (xp, yp, xp + 8) and any exponent n > 2, the same interval argument applies as in the
cases t = 1 and t = 2. Since yp > 0, we have

xn
p < xn

p + yn
p < (xp + 8)n,

and taking nth roots (monotone for positive numbers) gives

xp < (xn
p + yn

p )
1/n < xp + 8.

Thus any possible integer value of (xn
p + yn

p )
1/n must lie among the integers

xp + 1, xp + 2, . . . , xp + 7.

Figure 6 lists the first six succession–8 triples and the corresponding values of

c′ = (xn
p + yn

p )
1/n

for exponents up to k = 7. For each triple, the lowest possible odd integer candidate is xp +1, since t = 8 is even
and the parity analysis of Appendix G.7 shows that any integer solution c′ must be odd.
As an example, for the first succession–8 triple (21, 20, 29), the lowest possible odd integer candidate is 23. The
table shows that

216 + 206 = 149,766,121 = c′6,

so

c′ = (149,766,121)1/6 = 23.04 . . . ,

which is not an integer. This is the largest exponent k for which c′ lies above the lowest possible odd integer
candidate. For the next exponent k = 7, we obtain c′ = 22.67 . . ., which is already below 23. Hence, for the first
triple, it is sufficient to check exponents only up to k = 6.
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A similar pattern holds for the next three triples: for s = 2, 3, 4 it is sufficient to check up to k = 3, since beyond
this point the values of c′ fall below the lowest possible odd integer candidate. For the fifth and subsequent triples,
no checking is required at all, because the lowest possible odd integer candidate already exceeds the maximum
possible value of c′ for all k ≥ 2.

Figure 6: Values of c′ = (xn
p + ynp )

1/n for the first six succession–8 triples and exponents up to k = 7. In each
case, c′ never attains an odd integer value for n > 2.

These results are summarised in Figure 7. The quantity Ltmax denotes the real exponent k for which c′ = xp+1,
i.e. the lowest possible odd integer candidate. For the first triple (s = 1), Ltmax lies between 6 and 7; for the
second triple (s = 2), Ltmax lies between 3 and 4. Ltmax is a function of the index s (equivalently b) and of the
succession parameter t.

Figure 7: Maximum exponent k requiring manual checking for the first six succession–8 triples. For s ≥ 5,
Ltmax falls below 3, so no integer solutions are possible for any n > 2.

Succession-8 Triples: Geometric Illustration on the Lp-norm Curves

Figure 8 provides a geometric confirmation of the algebraic results proved above. The figure shows the lines from
the origin through the first four normalised rational succession–8 triples

(0.72, 0.69), (0.85, 0.53), (0.91, 0.42), (0.94, 0.35),

marked with red crosses. Each line is extended to intersect the Lp-norm curves for p = 3, 4, 5, 7, 10.

As established in the previous section, the corresponding values (xn
p+yn

p )
1/n are irrational for all n > 2. Consistent

with this, the figure shows that none of the rational points on these lines lie on any of the Lp-norm curves for
p > 2. Thus the geometric picture matches the algebraic proof: there are no rational coordinate intersections for
any of these succession–8 triples, and therefore no solutions to Fermat’s equation along these rational directions.
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Figure 8: Intersections of the first four succession–8 triples. No rational points (red crosses) lie on any
Lp-norm curve for p > 2.

How Ltmax Predicts Irrationality Across All Succession-t Triples

Ltmax represents the largest exponent that must be checked by hand for a given succession-t triple. For example,
for succession–8 triples we must check up to k = 6 for the first triple, up to k = 3 for the next three triples,
and thereafter no checks are required because Ltmax has fallen below 2. We define the index of the last triple
requiring any checking as Smax.

More precisely, let Smax be the largest serial number of a triple for which Ltmax ≥ 3, i.e. the final triple before
Ltmax drops below 3. For succession–8 triples this occurs at Smax = 4.

This behaviour is not unique to t = 8. For larger succession values we find, for example,

t = 9, 18, 25, 32 ⇒ Smax = 9, 10, 61, 38.

Thus, for t = 32 it is sufficient to check only the first 38 triples by hand; beyond this point Ltmax is already
below 2 and no integer solutions are possible. The same pattern continues for all larger t: as t increases, the
number of triples requiring manual checking remains finite.

As b (or a) and the exponent k increase, the value c′ = (xn
p + yn

p )
1/n tends monotonically to a. Consequently,

the range of possible integer values for c′ shrinks rapidly, and fewer triples require manual elimination. For
succession–8 triples, only the first four triples require checking (up to exponents 6, 3, 3, 3 respectively); thereafter
no integer solutions are possible.

For succession-1 and succession-2 triples, Ltmax is identically 2, so every triple produces an irrational intersection
point on every Lp-norm curve for p > 2. Hence there are countably infinitely many such irrational intersections.
The same holds for succession-8 triples once the first four triples have been checked, and the method extends
directly to all larger t.

This shows: The Ltmax method provides a unified way to prove that, for any succession-t family, only finitely
many triples require checking by hand. Beyond Smax(t), all triples yield irrational intersections with the Lp-norm
curves for p > 2, and therefore no integer solutions to xn + yn = zn exist along those rational directions.
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The behaviour of Ltmax and Smax observed for t = 1, 2, 8 extends naturally to all succession-t families. The
following two subsections summarise these general patterns.

Variation of Ltmax with b

Appendix I shows that Ltmax(b) decreases monotonically and tends asymptotically to 2 as b increases. Thus,
for any fixed succession-t family, only finitely many triples require manual checking; beyond this point all triples
automatically yield irrational intersections.

Variation of Smax with t

Appendix J shows that Smax(t) grows in a characteristic sawtooth pattern as t increases. For example, for a
succession–968 triple such as (2765, 2508, 3733), one must check the first 6429 triples by hand; all subsequent
triples are guaranteed to have irrational intersections. Thus even for very large t, the number of required checks
remains finite.

Possible Extensions Beyond Succession-t Families

The results in this paper focus on triples that share a fixed gap between the hypotenuse and one leg. This
restriction makes the behaviour of these triples very regular, which is why strong finiteness results can be proved.
For general primitive Pythagorean triples, the two parameters that generate them can vary much more freely,
producing a wider range of shapes and behaviours. Extending the ideas developed here to all triples would
involve studying how these different shapes influence the value of Lt(a, b), how often large exponents occur, and
how the corresponding directions meet Fermat curves. A fuller discussion of these possible extensions is provided
in Appendix K.

Summary Graphic
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Appendix A Skeleton Outline of Professor Wiles’ Proof

• Taniyama–Shimura Conjecture (1950s–1980s): Every elliptic curve over Q is modular.

• Frey’s Observation (1984): A non-trivial solution of

xn + yn = zn (n > 2)

would yield a Frey curve with abnormal properties, suggesting it is non-modular.

• Ribet’s Theorem (1986): Ribet showed that if the Frey curve is non-modular, then it contradicts the
Taniyama–Shimura Conjecture.

• Logical Implication: Thus, if all elliptic curves are modular as predicted by Taniyama–Shimura, no Frey
curve can exist; hence, there is no non-trivial solution to Fermat’s equation.

• Professor Wiles’ Breakthrough (1993/1995): Wiles (with Taylor) proved the Taniyama–Shimura
Conjecture for semi-stable elliptic curves, thereby confirming Fermat’s Last Theorem.

Appendix B Rational and Irrational (Non-Rational) Curves

The Normalised Fermat curves in Figure 2 are defined by

an + bn = 1, 0 < a, b < 1,

Case n = 2: The equation

a2 + b2 = 1,

defines a circle. Despite the fact that almost every point on the circle has irrational coordinates, the circle is
rational in the algebraic sense.

Case n = 3: The equation

a3 + b3 = 1,

defines a cubic curve and hence, for n = 3, the normalised curve is elliptic. In algebraic geometry, one describes
such a curve as non-rational (or sometimes, informally, as “irrational”).

Case n > 3: They are not elliptic curves and one describes such curves as non-rational (“irrational”).

In summary, for n > 2, one might loosely refer to curves having predominantly irrational coordinates as “irrational
curves”.

Appendix C Fermat Plots

Figure 9 below shows 3D Fermat plots for n = 3, 5, 10 and 100 for x up to 10.
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Figure 9: 3D Fermat plots n = 3, 5, 10, 100.

Appendix C.1 2D and Normalised Fermat Plot

In Figure 10 the left plot is a plan view of the 3D Fermat plot named a 2D Fermat plot. Since this is for n = 2,
this shows the Pythagorean triples marked with x. Normalising these curves gives the plot on the right of a
normalised Fermat plot. This is the same as a unit circle plot with the Pythagorean triples being the rational
coordinates on the unit circle.
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Figure 10: 2D Fermat plot (left) and normalised Fermat plot (right) for n = 2 showing Pythagorean
triples.

The corresponding Fermat plots for n = 5 are shown in Figure 11. Since Fermat’s Theorem is true, there are no
rational coordinates on this curve.

Figure 11: 2D Fermat plot (left) and normalised Fermat plot (right) for n = 5.
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Appendix D Higher Exponent Normalised Pythagorean Triples

Figure 12: Showing higher exponents of the normalised triples are less than one.

Appendix E Countable and Uncountable Sets

A set is called countable if its elements can be placed in one-to-one correspondence with the natural numbers.
Typical examples include the integers, the rationals, and any finite set. Even though such sets may be infinite,
their elements can still be listed in a sequence.
A set is uncountable if no such enumeration is possible. The most famous example is the set of real numbers. In
1874, Georg Cantor (1845–1918) published the first proof that the real numbers are uncountable, and in 1891 he
introduced his celebrated diagonal argument, showing that any attempted listing of real numbers must necessarily
omit some.
Cantor’s work, carried out between 1874 and 1897, revealed that infinite sets come in different sizes: the infinity
of the real numbers is strictly larger than the infinity of the natural numbers, that is, uncountable and countable
infinities.

Appendix F Intersections of the Lp-norm

Appendix F.1 Geometry of the Normalised Fermat Plot

Referring to Figure 13, consider an integer lattice grid in the positive x,y quadrant. We can form rational slopes
with vectors from the origin ending on an integer co-ordinate (r, s). In the case of an integer squared hypotenuse,
these rational slopes are the Pythagorean triples, with the example (4, 3, 5) shown.
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Figure 13: Lattice Points. Example of a rational slope for the triple (4, 3, 5).

A rational slope is shown in Figure 1 intersecting the normalised Fermat plots for n = 2 and n = 3. The plot
is symmetric about y = x and, without loss of generality, the triples for θ < 45◦ have x > y as shown for the
primitive coprime (x, y, z) triple (4, 3, 5). The triple obtained by reflecting about y = x is (3, 4, 5). This is an
example of a Brahmagupta triangle whose side lengths are consecutive positive integers. Extending the rational
slope to the normalised curve, for example n = 3, gives the coordinate of interception (a′, b′).

Appendix F.2 Geometry of the Intersecting Points

We seek expressions for the normalised coordinates a′ and b′ in terms of the rational Pythagorean triple a and b
only. Since the triangles are similar,

b′

a′ =
b

a
=⇒ b′ =

b

a
a′.

Moreover, the normalised curve satisfies

(a′)n + (b′)n = 1,

so

(b′)n = 1− (a′)n =
bn

an
(a′)n.

Putting these together:

(a′)n + (a′)n
bn

an
= 1, (a′)n

(
1 + bn

an

)
= 1, =⇒ (a′)n =

an

an + bn
, a′ =

a(
an + bn

)1/n .
Similarly, from (b′)n = 1− (a′)n one finds

(b′)n = 1− an

an + bn
=

bn

an + bn
=⇒ b′ =

b(
an + bn

)1/n .
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As n → ∞ a′ → 1 and b′ → b/a with the slope intersecting x = 1.

For any n > 2, Fermat’s Last Theorem tells us there are no non-zero rational solutions to an + bn = 1. It follows
that since (an + bn)1/n is irrational, then so are a′ and b′. Here we want to apply this to the special cases of
succession-t triples.

Appendix F.2.1 How This Applies to the Intersecting Points of Succession-t Triples

If we can show by means independent of Wiles that the denominator of succession-t triples are irrational, which
is the subject of this paper, then it follows in the proof below that the projected normalised pair (a′, b′) onto
the Lp-norm curves are necessarily irrational for every exponent n > 2, and it follows Fermat’s Last Theorem is
proved for these cases.

Let

a′ =
ap

(an
p + bnp )1/n

, b′ =
bp

(an
p + bnp )1/n

,

where ap, bp ∈ Q and (an
p + bnp )

1/n /∈ Q.

Claim. If ap ̸= 0 and bp ̸= 0, then a′ and b′ are irrational.

Proof. Let q ∈ Q \ {0} and let x ∈ R \Q. Suppose, for contradiction, that
q

x
∈ Q. Then there exists r ∈ Q such

that

q

x
= r =⇒ x =

q

r
,

which is a ratio of rationals and therefore rational. This contradicts the assumption that x is irrational. Hence
q

x
must be irrational.

Applying this with q = ap or bp and

x = (an
p + bnp )

1/n /∈ Q,

we conclude that a′ and b′ are irrational unless the corresponding numerator is zero. If ap = 0 (respectively
bp = 0), then a′ = 0 (respectively b′ = 0), which is rational.

Appendix G Primitive succession-t triples (x, y, z) with z = x+ t and the constraint x > y

We analyse integer triples (x, y, z) satisfying

x2 + y2 = z2, z = x+ t,

under the constraints that (x, y, z) is primitive (i.e. gcd(x, y, z) = 1) and x > y. The analysis characterises the
admissible forms of t and shows non-existence for small values such as t ∈ {3, 4, 5, 6, 7}.

Appendix G.1 Euclid parametrisation and the two assignments for x

Every primitive Pythagorean triple arises from coprime integers r > s > 0 of opposite parity by

a = r2 − s2,

b = 2rs,

c = r2 + s2,

with {a, b} the legs and c the hypotenuse. Since z = x + t is the hypotenuse c and x is a leg, there are two
(mutually exclusive) primitive assignments:

Case I (odd leg as x)

x = r2 − s2, y = 2rs, z = r2 + s2,

hence

t = z − x = 2s2.
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Case II (even leg as x)

x = 2rs, y = r2 − s2, z = r2 + s2,

hence

t = z − x = (r − s)2.

Thus, for primitive triples with z = x+ t the parameter t must be of one of the two forms

t = 2s2 or t = (r − s)2,

with gcd(r, s) = 1 and r, s of opposite parity.

Appendix G.2 The inequality x > y

Translate x > y into constraints on r, s in each case.

Case I.

With x = r2 − s2, y = 2rs,

r2 − s2 > 2rs ⇐⇒ r2 − 2rs− s2 > 0 ⇐⇒ (r − s)2 > 2s2,

equivalently

r > s(1 +
√
2).

Hence in Case I we require t = 2s2 together with r > s(1 +
√
2), gcd(r, s) = 1, and opposite parity.

Case II.

With x = 2rs, y = r2 − s2,

2rs > r2 − s2 ⇐⇒ −r2 + 2rs+ s2 > 0 ⇐⇒ (r − s)2 < 2s2.

Hence in Case II we require t = (r − s)2 together with (r − s)2 < 2s2, gcd(r, s) = 1, and opposite parity.

Appendix G.3 Showing there are no solutions for e.g. t = 3, 4, 5, 6, 7

Check each t ∈ {3, 4, 5, 6, 7} against the two forms and the parity/gcd and x > y constraints.

t = 3 : t odd ⇒ t ̸= 2s2. 3 is not a perfect square, so t ̸= (r − s)2. Hence t = 3 is impossible.

t = 4 : If t = 2s2, then 2s2 = 4 ⇒ s2 = 2, impossible. If t = (r − s)2, then r − s = 2, so r = s + 2, which
has the same parity as s and therefore cannot satisfy the opposite-parity requirement for a primitive generator.
Hence t = 4 is impossible.

t = 5 : t odd ⇒ t ̸= 2s2. 5 is not a perfect square, so t ̸= (r − s)2. Hence t = 5 is impossible.

t = 6 : If t = 2s2, then 2s2 = 6 ⇒ s2 = 3, impossible. 6 is not a perfect square, so t ̸= (r − s)2. Hence t = 6 is
impossible.

t = 7 : t odd ⇒ t ̸= 2s2. 7 is not a perfect square, so t ̸= (r − s)2. Hence t = 7 is impossible.

Appendix G.4 Remarks

The two algebraic forms for t are exhaustive because z is the hypotenuse r2 + s2 and x must be one of the two
Euclid legs. Primitivity forces gcd(r, s) = 1 and opposite parity, and the inequality x > y selects which case is
admissible while imposing the inequalities (r − s)2 > 2s2 (Case I) or (r − s)2 < 2s2 (Case II). These restrictions
rule out t = 3, 4, 5, 6, 7 for primitive succession triples with x > y.
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Appendix G.5 Summary

We analyse integer triples (x, y, z) satisfying

x2 + y2 = z2, z = x+ t,

under the constraints that (x, y, z) is primitive (i.e. gcd(x, y, z) = 1) and x > y. The Euclid parametrisation (with
r > s > 0, gcd(r, s) = 1, opposite parity) yields the two mutually exclusive primitive assignments:

Case I: x = r2 − s2, y = 2rs, z = r2 + s2, t = z − x = 2s2,

Case II: x = 2rs, y = r2 − s2, z = r2 + s2, t = z − x = (r − s)2.

Appendix G.6 Parity consequences

The parametrisation and primitivity imply the following parity dichotomy.

If t is odd, then x is even and y, z are odd.

Proof: If t is odd it cannot equal 2s2, so Case I is excluded. Thus we are in Case II where t = (r − s)2 is an odd
perfect square, so r − s is odd. Opposite parity of r, s implies one of r, s is even and the other odd; then

x = 2rs is even, y = r2 − s2 is odd, z = r2 + s2 is odd.

Primitivity ensures no common factor, so the stated parity pattern holds.

If t is even, then x is odd, y is even, and z is odd.

Proof: If t is even and the triple is primitive, either t = 2s2 (Case I) or t = (r − s)2 with (r − s) even (Case II).
In Case II, r− s even forces r, s to have the same parity, contradicting primitivity; hence Case II cannot produce
primitive triples when (r − s) is even. Therefore, for primitive triples with even t we must be in Case I with
t = 2s2. In Case I, opposite parity of r, s gives

x = r2 − s2 odd, y = 2rs even, z = r2 + s2 odd.

Thus the stated parity pattern follows.

Appendix G.7 Parity Summary

• An odd t forces the leg assigned to x to be the even leg 2rs, so x is even and the other two entries are odd.

• An even t in a primitive succession triple must be of the form 2s2, forcing the leg assigned to x to be the
odd leg r2 − s2, hence x odd, y even, z odd.

Appendix H Integral Root Theorem

A number of the form n
√
a where n and a are positive integers is either an integer or irrational, in the former case

a is the nth power of an integer (Niven [1]). This follows from the Integral Root Theorem where we consider a
polynomial:

xn + cn−1x
n−1 + cn−2x

n−2 + cn−3x
n−3 + ...+ c2x

2 + c1x+ c0 = 0

where the coefficients are integers. If such an equation has a rational root, it is an integer, moreover, this integer
root is a divisor of c0. Now since n

√
a is a root of xn−a = 0 and if this equation has a rational root, it must be an

integer. Furthermore, if n
√
a is an integer, say k , then a = kn. For example, 3

√
8 is an integer since 8 is a perfect

cube 23 whereas 3
√
9 is irrational since 9 is not a perfect cube.

Appendix I Why Ltmax Decreases and Accumulates Near 2

Appendix I.1 Behaviour of Ltmax(b) Along a Succession-t Family

Figure 14 illustrates the values of Ltmax(b) for succession–8 and succession–18 triples. Empirically, the values
decrease along each family and appear to approach 2. In this section we explain why this behaviour is expected,
and how it is consistent with the rigorous finiteness result proved in Appendix J.
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Figure 14: Values of Ltmax(b) for succession–8 and succession–18 triples. Only triples with Ltmax > 3
require explicit checking for integer solutions.

For a fixed succession parameter t, each primitive triple (a, b) in the family determines a unique continuous
exponent m = Ltmax(b) via

(am + bm)1/m = a+ δ,

where δ ∈ {1, 2} depends on the parity of t. Equivalently, define

f(m) = ln(am + bm)−m ln(a+ δ).

Then Ltmax(b) is the unique positive root of f(m) = 0.

Appendix I.2 Monotonicity of f(m)

Differentiating gives

f ′(m) =
am ln a+ bm ln b

am + bm
− ln(a+ δ).

The first term is a weighted average of ln a and ln b, both strictly less than ln(a+ δ). Hence

f ′(m) < 0,

so f(m) is strictly decreasing in m, and the root of f(m) = 0 is unique for each triple.

Appendix I.3 Asymptotic Interpretation via the Growth of a and b

For a fixed succession parameter t, the Euclid parametrisation shows that s is fixed and r → ∞, giving

a = r2 − s2 ∼ r2, b = 2rs ∼ 2s
√
a.

Thus
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b = O(
√
a), bm = O(am/2).

For exponents m > 2, the term am dominates bm, and the continuous norm satisfies

(am + bm)1/m = a
(
1 +O

(
a−(m−2)/2

))
.

As the index of the triple increases, the correction term O(a−(m−2)/2) becomes negligible. Consequently, the value
of m needed to satisfy

(am + bm)1/m = a+ δ

must move closer to the exponent for which the left-hand side equals the Euclidean norm. Since the Euclidean
norm corresponds to m = 2, the values Ltmax(b) necessarily accumulate near 2 as a → ∞.

Appendix I.4 Consistency with the Finiteness Theorem

Appendix J establishes that for each fixed t, the condition Ltmax(a, b) ≥ 3 can hold only for finitely many triples.
Beyond the finite index Smax(t), all triples satisfy Ltmax(a, b) < 3. The asymptotic analysis above explains the
observed behaviour: once a is sufficiently large, the continuous exponent solving (am + bm)1/m = a + δ must lie
in the interval (2, 3), and numerically it approaches 2 from above.

Conclusion. For each fixed succession parameter t, the function Ltmax(b) is well-defined and strictly decreasing
in the exponent variable m. Combined with the growth behaviour of a and b along the family, this implies that
Ltmax(b) eventually lies below 3 and accumulates near 2 as the triple index increases. This behaviour is consistent
with, and helps visualise, the rigorous finiteness of Smax(t).

Appendix J Why Smax(t) Grows with t

Appendix J.1 Variation of Smax with t

Figure 15 shows that Smax(t) increases in a sawtooth manner. For example, for a succession-968 triple e.g.
(2765, 2508, 3733) we need to check by hand the first 6429 triples for rationality; after that we then know there
are a countably infinite number of succession-968 triples that have no integer solutions.
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Figure 15: This shows how Smax increases with the t of succession-t triples. Smax is the largest triple
index where Ltmax > 3. This indicates the number of triples required to check by hand for integer
solution as a function of t for the succession t triple.

Appendix J.2 Finiteness of Smax(t) for Succession-t Families

In this section we prove that for every admissible succession parameter t, only finitely many primitive Pythagorean
triples (a, b, c) with c = a+t satisfy Lt(a, b) > 3. Equivalently, the index Smax(t) of the last triple requiring manual
checking is finite for each t.

Appendix J.3 Setup and Euclid parametrisation

Recall that every primitive Pythagorean triple can be written in Euclid form

a = r2 − s2, b = 2rs, c = r2 + s2,

where r > s > 0, gcd(r, s) = 1, and r, s have opposite parity.
The succession-t condition c = a+ t becomes

r2 + s2 = (r2 − s2) + t,

hence

t = 2s2.

Thus for any fixed t the parameter s is uniquely determined by

s =
√

t
2
,

and r ranges over positive integers satisfying the usual coprimality and parity conditions with this fixed s.
In particular, for fixed t we may regard s as a constant and let r → ∞. The corresponding legs and hypotenuse
are

a = r2 − s2, b = 2rs, c = r2 + s2 = a+ t.
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Appendix J.4 Asymptotic growth of a and b for fixed t

Fix an admissible succession parameter t, and let (a, b, c) be the corresponding primitive triples with c = a + t.
Then, as r → ∞,

a ∼ r2, b ∼ 2sr,

and in particular

b = O(
√
a) and b3 = O(a3/2).

Since s is fixed and r → ∞, we have

a = r2 − s2 = r2
(
1− s2

r2

)
∼ r2,

and

b = 2rs ∼ 2sr.

Solving asymptotically for r from a ∼ r2 gives r ∼
√
a, hence

b ∼ 2s r ∼ 2s
√
a,

which shows b = O(
√
a). Cubing this relation yields

b3 = O(a3/2).

Appendix J.5 The threshold condition Lt(a, b) > 3

By definition, Lt(a, b) is the unique real m such that

(am + bm)1/m = a+ δ,

where δ ∈ {1, 2} is determined by the parity of t (as in the main text). In particular,

Lt(a, b) > 3 ⇐⇒ a3 + b3 > (a+ δ)3,

since the mth root is strictly increasing in m for fixed positive a, b.
Expanding the right–hand side gives

(a+ δ)3 = a3 + 3δa2 + 3δ2a+ δ3,

so that

Lt(a, b) > 3 ⇐⇒ b3 > 3δa2 + 3δ2a+ δ3.

In particular, a necessary condition for Lt(a, b) > 3 is

b3 > 3δa2.

For fixed t (hence fixed δ and s), the inequality

b3 > 3δa2

fails for all sufficiently large primitive triples in the succession-t family. Equivalently, there exists A(t) such that

a > A(t) =⇒ b3 ≤ 3δa2.

By Lemma Appendix J.4, we have b3 = O(a3/2) as a → ∞ for fixed t. More concretely, there exists a constant
K(t) > 0 such that

b3 ≤ K(t) a3/2

for all sufficiently large a in the succession-t family. For such a we therefore have

b3

a2
≤ K(t) a−1/2 −→ 0 as a → ∞.

Hence we may choose A(t) so large that

K(t) a−1/2 ≤ 3δ whenever a > A(t),

which implies
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b3 ≤ K(t) a3/2 ≤ 3δa2.

Thus b3 > 3δa2 can hold only for finitely many values of a (and hence finitely many triples) in the succession-t
family.

Appendix J.6 Main theorem: Finiteness of Smax(t)

For every admissible succession parameter t, there are only finitely many primitive Pythagorean triples (a, b, c)
with c = a+ t satisfying Lt(a, b) > 3. In particular, the index

Smax(t) = max{ k : Lt(ak, bk) ≥ 3 }
is finite for each t.
As observed above, Lt(a, b) > 3 implies

b3 > 3δa2 + 3δ2a+ δ3 > 3δa2.

By Lemma Appendix J.5, the inequality b3 > 3δa2 can hold only for finitely many triples in the succession-t
family. Hence Lt(a, b) > 3 can also hold only for finitely many such triples.
Since the primitive succession-t triples can be indexed in order of increasing a (or any other fixed ordering), there
exists a largest index Smax(t) for which Lt(ak, bk) ≥ 3. For all triples beyond this index, we have Lt(ak, bk) < 3,
and no manual checking is required.

Appendix J.7 Interpretation

Theorem Appendix J.6 shows that for any fixed succession parameter t, only finitely many triples require explicit
verification. Beyond the finite index Smax(t), all triples in the succession-t family have continuous norm exponent
Lt(a, b) < 3, and thus cannot yield integer solutions to xn + yn = zn for n > 2 along the corresponding rational
directions.

Appendix K Possible Extensions Beyond Succession-t Families

The finiteness theorem proved in Appendix J establishes that for each fixed succession parameter t, only finitely
many primitive Pythagorean triples in the corresponding family satisfy Lt(a, b) ≥ 3. This result relies crucially
on the rigidity introduced by fixing the hypotenuse gap c− a = t, which forces the Euclid parameter s to remain
constant while r → ∞. Consequently,

a = r2 − s2 ∼ r2, b = 2rs = O(
√
a),

and the inequality b3 > 3δa2 required for Lt(a, b) > 3 eventually becomes impossible. It is natural to ask whether
analogous finiteness or asymptotic phenomena hold for all primitive triples, without fixing t. In this section we
outline several directions in which the present methods may be extended.

Appendix K.1 Classification by Aspect Ratio b/a

For general primitive triples, the Euclid parametrisation

a = r2 − s2, b = 2rs

allows both parameters r and s to vary. The ratio

λ =
b

a
=

2rs

r2 − s2

serves as a natural “shape parameter” describing the geometry of the triple. Succession-t families correspond to
the extreme regime λ → 0, where the triangles become increasingly thin. A possible extension is to fix λ ∈ (0, 1)
and study triples for which b/a ≈ λ. One may then ask whether the continuous exponent Lt(a, b) converges
to a limit m(λ) as a → ∞, and how m(λ) varies with λ. The present work effectively determines the limiting
behaviour in the case λ → 0.
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Appendix K.2 Asymptotics in Multiple Growth Regimes

The finiteness of Smax(t) relies on the growth law b = O(
√
a) that arises when s is fixed. For general triples,

however, the parameter ratio s/r may tend to any value in (0, 1), and the growth of b may range from O(
√
a) up

to Θ(a). Extending the analysis of Lt(a, b) to these broader regimes would require a more delicate study of the
function

(am + bm)1/m

as both a and b grow in a coupled manner. One possible goal is to identify conditions on the growth of b relative
to a under which Lt(a, b) remains below 3 for all sufficiently large triples.

Appendix K.3 Density of Triples with Large Lt

Another natural question is whether triples with large continuous exponent are rare in a global sense. For example,
one may ask whether the set of primitive triples satisfying Lt(a, b) ≥ 3 has density zero when triples are ordered
by increasing hypotenuse or by increasing Euclid parameter r. The methods developed for succession-t families
suggest that large values of Lt(a, b) require the leg b to grow unusually quickly relative to a, which may be a
statistically rare phenomenon.

Appendix K.4 Geometric Interpretation on Fermat Curves

The geometric viewpoint developed in this paper - interpreting each triple as a rational direction intersecting
the Fermat curve xp + yp = 1 - extends naturally to all primitive triples. A possible line of investigation is to
classify the rational directions that yield irrational intersections for all p > 2, and to determine whether such
directions form a set of full measure. The succession-t families provide explicit infinite subfamilies with this
property; extending this to a global classification would be a significant advance.

Appendix K.5 Summary

The finiteness of Smax(t) demonstrates that fixing the hypotenuse gap imposes strong asymptotic constraints
on the geometry of the corresponding triples. Extending these results to all primitive triples would require
new ideas, particularly in analysing the behaviour of Lt(a, b) across different growth regimes for a and b. The
directions outlined above represent natural avenues for future research and illustrate how the geometric and
analytic framework developed in this paper may be broadened beyond the succession-t setting.
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